Lasers in Medical Science

, Volume 34, Issue 7, pp 1441–1448 | Cite as

Posterior laryngofissure using a surgical contact diode laser: an experimental feasibility study

  • Arteiro Queiroz Menezes
  • Paulo Francisco Guerreiro CardosoEmail author
  • Christopher Kengo Nagao
  • Helio Minamoto
  • Benoit Jacques Bibas
  • Isaac de Faria Soares Rodrigues
  • José Pinhata Otoch
  • Marisa Dolhnikoff
  • Mauro Canzian
  • Marilia Wellichan Mancini
  • Paulo Manuel Pêgo-Fernandes
Original Article


To evaluate the feasibility of a 980-nm contact diode laser (CDL) as a method for creating a posterior laryngofissure in live pigs. Twenty-eight Landrace pigs (15–20 kg) were anesthetized, intubated, ventilated, and submitted to a cervical tracheostomy. An anterior and posterior midline longitudinal laryngofissure incision was created according to randomization—control (n = 4), posterior laryngofissure with a scalpel blade; electrocautery (n = 12), posterior laryngofissure by electrocautery (10, 15, 20, 25 W powers); CDL (n = 12), posterior laryngofissure by the CDL (10, 15, 20, 25 W peak powers in pulsed mode). Larynx and proximal trachea were excised, prepared for histopathology, and digital morphometric analysis. Measurements in and within each group were analyzed (Kruskal-Wallis and Dunn test) with a level of significance of p < 0.05. Incision width was not different between the groups, as well as in the powers used in CDL (p = 0.161) and electrocautery group (p = 0.319). The depth of the incisions was smaller in the Laser group compared to control (p = 0.007), and in the electrocautery compared to control (p = 0.026). Incision area was smaller in CDL compared with the control (p = 0.027), and not different between laser and electrocautery groups (p = 0.199). The lateral thermal damage produced by electrocautery was the largest, with a significant difference between laser and electrocautery (p = 0.018), and between electrocautery and control (p = 0.004), whereas the comparison between laser and control showed no significant differences (p = 0.588). The posterior laryngofissure incision using a 980-nm CDL is feasible resulting in smaller incisional area and less lateral thermal damage.


Contact diode laser Larynx Pigs Tracheal stenosis Surgery 


Role of funding source

This study was funded by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo, Brazil (FAPESP grants 2015/17847-1 and 2016/25437-0). Funding covered the experimental expenses, the equipment used in the study, and a scholarship for a medical student.

Compliance with ethical standards

Conflict of interest statement

The author Marilia Wellichan Mancini is a physicist working at the company DMC at the department of research and development of the laser equipment used in this study. The author Paulo Francisco Guerreiro Cardoso was the recipient of the FAPESP grants 2015/17847-1 and 2016/25437-0. The remaining authors have no conflict of interest to disclose.

Ethical approval

The research protocol was approved on by the ethics committee (CEUA 153/14) of the Faculty of Medicine of the University of Sao Paulo, Brazil.

Informed consent

Not applicable in the current animal experimental protocol.


  1. 1.
    Benjamin B (1993) Prolonged intubation injuries of the larynx: endoscopic diagnosis, classification, and treatment. Ann Otol Rhinol Laryngol Suppl 160:1–15PubMedGoogle Scholar
  2. 2.
    Grillo HC, Mathisen DJ, Wain JC (1992) Laryngotracheal resection and reconstruction for subglottic stenosis. Ann Thorac Surg 53:54–63CrossRefPubMedGoogle Scholar
  3. 3.
    Terra RM, Minamoto H, Carneiro F, Pego-Fernandes PM, Jatene FB (2009) Laryngeal split and rib cartilage interpositional grafting: treatment option for glottic/subglottic stenosis in adults. J Thorac Cardiovasc Surg 137:818–823CrossRefPubMedGoogle Scholar
  4. 4.
    Montgomery WW (1974) Silicone tracheal T-tube. Ann Otol Rhinol Laryngol 83:71–75CrossRefPubMedGoogle Scholar
  5. 5.
    Grillo HC (1982) Primary reconstruction of airway after resection of subglottic laryngeal and upper tracheal stenosis. Ann Thorac Surg 33:3–18CrossRefPubMedGoogle Scholar
  6. 6.
    Ho KH, Ulualp SO (2008) Laser-assisted management of congenital and acquired pediatric airway disorders: case reports and review of the literature. Photomed Laser Surg 26:601–607CrossRefPubMedGoogle Scholar
  7. 7.
    Inglis AF Jr, Perkins JA, Manning SC, Mouzakes J (2003) Endoscopic posterior cricoid split and rib grafting in 10 children. Laryngoscope 113:2004–2009CrossRefPubMedGoogle Scholar
  8. 8.
    Gerber ME, Modi VK, Ward RF, Gower VM, Thomsen J (2013) Endoscopic posterior cricoid split and costal cartilage graft placement in children. Otolaryngol Head Neck Surg 148:494–502CrossRefPubMedGoogle Scholar
  9. 9.
    Beer F, Korpert W, Passow H, Meinl L, Buchmair AG et al (2012) Reduction of collateral thermal impact of diode laser irradiation on soft tissue due to modified application parameters. Lasers Med Sci 27:917–921CrossRefPubMedGoogle Scholar
  10. 10.
    Hoetzenecker K, Schweiger T, Roesner I, Leonhard M, Marta G, Denk-Linnert DM et al (2016) A modified technique of laryngotracheal reconstruction without the need for prolonged postoperative stenting. J Thorac Cardiovasc Surg 152:1008–1017CrossRefPubMedGoogle Scholar
  11. 11.
    Fearon B, Cinnamond M (1976) Surgical correction of subglottic stenosis of the larynx. Clinical results of the Fearon-Cotton operation. J Otolaryngol 5:475–478PubMedGoogle Scholar
  12. 12.
    Strong MS, Healy GB, Vaughan CW, Fried MP, Shapshay S (1979) Endoscopic management of laryngeal stenosis. Otolaryngol Clin N Am 12:797–805Google Scholar
  13. 13.
    Sinha UK, Gallagher LA (2003) Effects of steel scalpel, ultrasonic scalpel, CO2 laser, and monopolar and bipolar electrosurgery on wound healing in Guinea pig oral mucosa. Laryngoscope 113:228–236CrossRefPubMedGoogle Scholar
  14. 14.
    Jin JY, Lee SH, Yoon HJ (2010) A comparative study of wound healing following incision with a scalpel, diode laser or Er,Cr:YSGG laser in Guinea pig oral mucosa: a histological and immunohistochemical analysis. Acta Odontol Scand 68:232–238CrossRefPubMedGoogle Scholar
  15. 15.
    Bozkulak O, Tabakoglu HO, Aksoy A, Kurtkaya O, Sav A, Canbeyli R et al (2004) The 980-nm diode laser for brain surgery: histopathology and recovery period. Lasers Med Sci 19:41–47CrossRefPubMedGoogle Scholar
  16. 16.
    Geldi C, Bozkulak O, Tabakoglu HO, Isci S, Kurt A, Gulsoy M (2006) Development of a surgical diode-laser system: controlling the mode of operation. Photomed Laser Surg 24:723–729CrossRefPubMedGoogle Scholar
  17. 17.
    Niemz MHM (2007) Biological and medical physics, biomedical enginnering − laser-tissue interactions, fundamentals and applications. 3rd Enlarged edition. Springer, HeidelbergGoogle Scholar
  18. 18.
    Vo-Dinh T (2003) Biomedical photonics handbook, 1st edn. CRC Press, New YorkCrossRefGoogle Scholar
  19. 19.
    Cercadillo-Ibarguren I, Espana-Tost A, Arnabat-Dominguez J, Valmaseda-Castellon E, Berini-Aytes L, Gay-Escoda C (2010) Histologic evaluation of thermal damage produced on soft tissues by CO2, Er,Cr:YSGG and diode lasers. Med Oral Patol Oral Cir Bucal 15:e912–e918CrossRefPubMedGoogle Scholar
  20. 20.
    Beer F, Korpert W, Buchmair AG, Passow H, Meinl A, Heimel P et al (2013) The influence of water/air cooling on collateral tissue damage using a diode laser with an innovative pulse design (micropulsed mode)-an in vitro study. Lasers Med Sci 28:965–971CrossRefPubMedGoogle Scholar
  21. 21.
    Bailey AP, Lancerotto L, Gridley C, Orgill DP, Nguyen H, Pescarini E et al (2014) Greater surgical precision of a flexible carbon dioxide laser fiber compared to monopolar electrosurgery in porcine myometrium. J Minim Invasive Gynecol 21:1103–1109CrossRefPubMedGoogle Scholar
  22. 22.
    Arroyo HH, Neri L, Fussuma CY, Imamura R (2016) Diode laser for laryngeal surgery: a systematic review. Int Arch Otorhinolaryngol 20:172–179CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Arteiro Queiroz Menezes
    • 1
    • 2
    • 3
  • Paulo Francisco Guerreiro Cardoso
    • 1
    Email author
  • Christopher Kengo Nagao
    • 1
  • Helio Minamoto
    • 1
  • Benoit Jacques Bibas
    • 1
  • Isaac de Faria Soares Rodrigues
    • 1
  • José Pinhata Otoch
    • 4
  • Marisa Dolhnikoff
    • 5
  • Mauro Canzian
    • 6
  • Marilia Wellichan Mancini
    • 7
  • Paulo Manuel Pêgo-Fernandes
    • 1
  1. 1.Division of Thoracic Surgery, Thoracic Surgery Research Laboratory (LIM-61)Heart Institute (InCor) do Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao PauloSão PauloBrazil
  2. 2.Department of SurgeryUniversidade do Estado do AmazonasManausBrazil
  3. 3.Universidade Federal do AmazonasManausBrazil
  4. 4.Discipline of Surgical Technique and Experimental Surgery (LIM 26)Faculdade de Medicina da Universidade de Sao PauloSao PauloBrazil
  5. 5.Department of PathologyFaculdade de Medicina da Universidade de Sao PauloSao PauloBrazil
  6. 6.LABPAC Pathology LabSão PauloBrazil
  7. 7.Núcleo de Pesquisa e Ensino de Fototerapia nas Ciências da Saúde–NUPENSão CarlosBrazil

Personalised recommendations