Advertisement

Lasers in Medical Science

, Volume 34, Issue 7, pp 1345–1351 | Cite as

A pilot prospective study of 577-nm yellow subthreshold micropulse laser treatment with two different power settings for acute central serous chorioretinopathy

  • Lijun Zhou
  • Victor Chong
  • Kunbei Lai
  • Chuangxin Huang
  • Fabao Xu
  • Yajun Gong
  • Maimaitiaili Youlidaxi
  • Tao Li
  • Lin Lu
  • Chenjin JinEmail author
Original Article

Abstract

To compare the efficacy of 50% threshold power with 25% threshold power of 577-nm subthreshold micropulse laser (SMPL) for acute central serous chorioretinopathy (CSC). Prospective, interventional, non-randomized, comparative case series. A total of 54 patients (54 eyes) with acute CSC were enrolled. Twenty-four eyes received 25% threshold power and 30 eyes received 50% threshold power of 577-nm SMPL. Best-corrected visual acuity (BCVA), central macular thickness (CMT), and complete absorption of subretinal fluid (SRF) were evaluated at 1 month and 3 months. The complete absorption rate of SRF in the 50% power group was significantly greater than that in the 25% power group at 1 month (70.0% vs 25.0%, p < 0.001) and at 3 months (83.3% vs 54.2%, p < 0.001). Mean BCVA improved from 0.34 ± 0.20 LogMAR to 0.02 ± 0.13 LogMAR in the 50% power group and from 0.27 ± 0.15 LogMAR to 0.14 ± 0.21 LogMAR in the 25% power group with a significant difference between the two groups after 3 months (p = 0.027). In the 50% power group, the CMT decreased from 491.6 ± 154.8 μm at baseline to 231.3 ± 92.3 μm at 1 month and 228.2 ± 88.1 μm at 3 months, and in the 25% power group, the CMT decreased from 444.9 ± 164.1 to 306.8 ± 102.6 μm at 1 month and 254.5 ± 101.7 μm at 3 months. There was statistical difference of CMT at 1 month (p = 0.009) but no significant difference at 3 months between the two groups (p = 0.232). SMPL with 50% threshold power may be more effective than 25% threshold power for acute CSC.

Keywords

Subthreshold micropulse laser Acute central serous chorioretinopathy Titration power 

Notes

Acknowledgements

The authors would like to thank all staff involved in the care of patient presented in this study.

Financial support

Supported by National Natural Science Foundation of China (81670866).

Compliance with ethical standards

Conflict of interest

All authors have no financial or other conflicts of interest concerning this study. VC is a consultant of Quantel Medical and an employee of Boehringer Ingelheim.

Informed consent

Written informed consents were obtained from the patients before treatment.

Ethical approval

This study was approved by the Ethics Committee of Zhongshan Ophthalmic Center of Sun Yat-Sen University and was conducted in adherence with the tenets of the Declaration of Helsinki.

References

  1. 1.
    An SH, Kwon YH (2016) Effect of a topical nonsteroidal anti-inflammatory agent (0.1% pranoprofen) on acute central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 254(8):1489–1496.  https://doi.org/10.1007/s00417-015-3215-8 CrossRefPubMedGoogle Scholar
  2. 2.
    Wong KH, Lau KP, Chhablani J, Tao Y, Li Q, Wong IY (2016) Central serous chorioretinopathy: what we have learnt so far. Acta Ophthalmol 94(4):321–325.  https://doi.org/10.1111/aos.12779 CrossRefPubMedGoogle Scholar
  3. 3.
    Yannuzzi LA (1987) Type-A behavior and central serous chorioretinopathy. Retina 7(2):111–131CrossRefPubMedGoogle Scholar
  4. 4.
    Daruich A, Matet A, Dirani A, Bousquet E, Zhao M, Farman N, Jaisser F, Behar-Cohen F (2015) Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. Prog Retin Eye Res 48:82–118.  https://doi.org/10.1016/j.preteyeres.2015.05.003 CrossRefPubMedGoogle Scholar
  5. 5.
    Iacono P, Battaglia Parodi M, Falcomata B, Bandello F (2015) Central serous chorioretinopathy treatments: a mini review. Ophthalmic Res 55(2):76–83.  https://doi.org/10.1159/000441502 CrossRefPubMedGoogle Scholar
  6. 6.
    Loo RH, Scott IU, Flynn HW Jr, Gass JD, Murray TG, Lewis ML, Rosenfeld PJ, Smiddy WE (2002) Factors associated with reduced visual acuity during long-term follow-up of patients with idiopathic central serous chorioretinopathy. Retina 22(1):19–24CrossRefPubMedGoogle Scholar
  7. 7.
    Fok AC, Chan PP, Lam DS, Lai TY (2011) Risk factors for recurrence of serous macular detachment in untreated patients with central serous chorioretinopathy. Ophthalmic Res 46(3):160–163.  https://doi.org/10.1159/000324599 CrossRefPubMedGoogle Scholar
  8. 8.
    Kitzmann AS, Pulido JS, Diehl NN, Hodge DO, Burke JP (2008) The incidence of central serous chorioretinopathy in Olmsted County, Minnesota, 1980-2002. Ophthalmology 115(1):169–173.  https://doi.org/10.1016/j.ophtha.2007.02.032 CrossRefPubMedGoogle Scholar
  9. 9.
    Chan WM, Lai TY, Lai RY, Liu DT, Lam DS (2008) Half-dose verteporfin photodynamic therapy for acute central serous chorioretinopathy: one-year results of a randomized controlled trial. Ophthalmology 115(10):1756–1765.  https://doi.org/10.1016/j.ophtha.2008.04.014 CrossRefPubMedGoogle Scholar
  10. 10.
    Khosla PK, Rana SS, Tewari HK, Azad RU, Talwar D (1997) Evaluation of visual function following argon laser photocoagulation in central serous retinopathy. Ophthalmic Surg Lasers 28(8):693–697PubMedGoogle Scholar
  11. 11.
    Zhao MW, Zhou P, Xiao HX, Lv YS, Li CA, Liu GD, Li XX (2009) Photodynamic therapy for acute central serous chorioretinopathy: the safe effective lowest dose of verteporfin. Retina 29(8):1155–1161.  https://doi.org/10.1097/IAE.0b013e3181a6c028 CrossRefPubMedGoogle Scholar
  12. 12.
    Schatz H, Yannuzzi LA, Gitter KA (2012) Subretinal neovascularization following argon laser photocoagulation treatment for central serous chorioretinopathy: complication or misdiagnosis? 1975. Retina 32(Suppl 1):OP893–OP906CrossRefPubMedGoogle Scholar
  13. 13.
    Koytak A, Erol K, Coskun E, Asik N, Ozturk H, Ozerturk Y (2010) Fluorescein angiography-guided photodynamic therapy with half-dose verteporfin for chronic central serous chorioretinopathy. Retina 30(10):1698–1703.  https://doi.org/10.1097/IAE.0b013e3181da4354 CrossRefPubMedGoogle Scholar
  14. 14.
    Kim SW, Oh J, Oh IK, Huh K (2009) Retinal pigment epithelial tear after half fluence PDT for serous pigment epithelial detachment in central serous chorioretinopathy. Ophthalmic Surg Lasers Imaging 40(3):300–303CrossRefPubMedGoogle Scholar
  15. 15.
    Sivaprasad S, Elagouz M, McHugh D, Shona O, Dorin G (2010) Micropulsed diode laser therapy: evolution and clinical applications. Surv Ophthalmol 55(6):516–530.  https://doi.org/10.1016/j.survophthal.2010.02.005 CrossRefPubMedGoogle Scholar
  16. 16.
    Kwon YH, Lee DK, Kwon OW (2014) The short-term efficacy of subthreshold micropulse yellow (577-nm) laser photocoagulation for diabetic macular edema. Korean J Ophthalmol 28(5):379–385.  https://doi.org/10.3341/kjo.2014.28.5.379 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ohkoshi K, Yamaguchi T (2010) Subthreshold micropulse diode laser photocoagulation for diabetic macular edema in Japanese patients. Am J Ophthalmol 149(1):133–139.  https://doi.org/10.1016/j.ajo.2009.08.010 CrossRefPubMedGoogle Scholar
  18. 18.
    Yadav NK, Jayadev C, Rajendran A, Nagpal M (2014) Recent developments in retinal lasers and delivery systems. Indian J Ophthalmol 62(1):50–54.  https://doi.org/10.4103/0301-4738.126179 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yadav NK, Jayadev C, Mohan A, Vijayan P, Battu R, Dabir S, Shetty B, Shetty R, Medscape (2015) Subthreshold micropulse yellow laser (577 nm) in chronic central serous chorioretinopathy: safety profile and treatment outcome. Eye (Lond) 29(2):258–264; quiz 265.  https://doi.org/10.1038/eye.2014.315 CrossRefGoogle Scholar
  20. 20.
    Scholz P, Altay L, Fauser S (2016) Comparison of subthreshold micropulse laser (577 nm) treatment and half-dose photodynamic therapy in patients with chronic central serous chorioretinopathy. Eye (Lond).  https://doi.org/10.1038/eye.2016.142
  21. 21.
    Kim JY, Park HS, Kim SY (2015) Short-term efficacy of subthreshold micropulse yellow laser (577-nm) photocoagulation for chronic central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 253(12):2129–2135.  https://doi.org/10.1007/s00417-015-2965-7 CrossRefPubMedGoogle Scholar
  22. 22.
    Roisman L, Magalhaes FP, Lavinsky D, Moraes N, Hirai FE, Cardillo JA, Farah ME (2013) Micropulse diode laser treatment for chronic central serous chorioretinopathy: a randomized pilot trial. Ophthalmic Surg Lasers Imaging Retina 44(5):465–470.  https://doi.org/10.3928/23258160-20130909-08 CrossRefPubMedGoogle Scholar
  23. 23.
    Sun X, Shuai Y, Fang W, Li J, Ge W, Yuan S, Liu Q (2017) Spironolactone versus observation in the treatment of acute central serous chorioretinopathy. Br J Ophthalmol.  https://doi.org/10.1136/bjophthalmol-2017-311096
  24. 24.
    Lavinsky D, Sramek C, Wang J, Huie P, Dalal R, Mandel Y, Palanker D (2014) Subvisible retinal laser therapy: titration algorithm and tissue response. Retina 34(1):87–97.  https://doi.org/10.1097/IAE.0b013e3182993edc CrossRefPubMedGoogle Scholar
  25. 25.
    Lavinsky D, Palanker D (2015) Nondamaging photothermal therapy for the retina: initial clinical experience with chronic central serous retinopathy. Retina 35(2):213–222.  https://doi.org/10.1097/IAE.0000000000000340 CrossRefPubMedGoogle Scholar
  26. 26.
    Maruko I, Koizumi H, Hasegawa T, Arakawa H, Iida T (2017) Subthreshold 577 nm micropulse laser treatment for central serous chorioretinopathy. PLoS One 12(8):e0184112.  https://doi.org/10.1371/journal.pone.0184112 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-Sen UniversityGuangzhou CityChina
  2. 2.Optegra Eye HospitalLondonUK
  3. 3.The First People’s Hospital of KashgarKashgarChina

Personalised recommendations