Advertisement

Raman spectroscopy applications in rheumatology

  • Corina D. Hosu
  • Vlad Moisoiu
  • Andrei Stefancu
  • Elisabeta Antonescu
  • Loredana F. Leopold
  • Nicolae LeopoldEmail author
  • Daniela Fodor
Review Article
  • 38 Downloads

Abstract

Raman spectroscopy is a type of vibrational spectroscopy based on the inelastic scattering of photons, which has attracted much attention due to its potential clinical application in rheumatology. In this review, we discuss the typical spectral features of cartilage, bone, synovial fluid, and pathologic crystal deposits, as well as methods of amplifying the Raman signal of biofluids such as drop-coating deposition Raman spectroscopy. Further, applications of Raman and drop-coating deposition Raman spectroscopy in osteoarthritis are described, highlighting the clinical potential of these methods. We also discuss the role of Raman and related techniques in analyzing pathologic crystals such as monosodium urate, calcium pyrophosphate dihydrate, and hydroxyapatite. The results presented in this review demonstrate that Raman spectroscopy has grown past the stage of proof-of-concept, especially in the case of pathologies involving crystal depositions such as gout and calcium pyrophosphate deposition disease , for which the method has been validated on large number of samples. As the medical community becomes more and more aware of Raman spectroscopy, it is envisioned that it will become a standard technique in the near future.

Keywords

Rheumatology Raman spectroscopy Osteoarthritis Gout Calcium pyrophosphate deposition disease Ectopic calcifications 

Notes

Funding

This work was supported by a grant from the Romanian Ministry of Research and Innovation, CCCDI-UEFISCDI, project number PN-III-P1–1.2-PCCDI-2017-0056, within PNCDI III. A.S. also acknowledges support from the College for Advanced Performance Studies, Babeș-Bolyai University, Cluj-Napoca, Romania.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, Liang MH, Kremers HM, Mayes MD, Merkel PA, Pillemer SR, Reveille JD, Stone JH (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum 58(1):15–25.  https://doi.org/10.1002/art.23177 CrossRefGoogle Scholar
  2. 2.
    Loeser RF, Collins JA, Diekman BO (2016) Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:412.  https://doi.org/10.1038/nrrheum.2016.65 CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Butler HJ, Ashton L, Bird B, Cinque G, Curtis K, Dorney J, Esmonde-White K, Fullwood NJ, Gardner B, Martin-Hirsch PL, Walsh MJ, McAinsh MR, Stone N, Martin FL (2016) Using Raman spectroscopy to characterize biological materials. Nat Protoc 11(4):664–687.  https://doi.org/10.1038/nprot.2016.036 CrossRefGoogle Scholar
  4. 4.
    Boskey A, Camacho NP (2007) FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28(15):2465–2478.  https://doi.org/10.1016/j.biomaterials.2006.11.043 CrossRefGoogle Scholar
  5. 5.
    Bonifacio A, Cervo S, Sergo V (2015) Label-free surface-enhanced Raman spectroscopy of biofluids: fundamental aspects and diagnostic applications. Anal Bioanal Chem 407(27):8265–8277.  https://doi.org/10.1007/s00216-015-8697-z CrossRefGoogle Scholar
  6. 6.
    Esmonde-White K (2014) Raman spectroscopy of soft musculoskeletal tissues. Appl Spectrosc 68(11):1203–1218.  https://doi.org/10.1366/14-07592 CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958.  https://doi.org/10.1146/annurev.biochem.77.032207.120833 CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporos Int 20(6):1013–1021.  https://doi.org/10.1007/s00198-009-0860-y
  9. 9.
    Donnelly E (2011) Methods for assessing bone quality: a review. Clin Orthop Relat Res 469(8):2128–2138.  https://doi.org/10.1007/s11999-010-1702-0 CrossRefGoogle Scholar
  10. 10.
    Reinert T, Reibetanz U, Schwertner M, Vogt J, Butz T, Sakellariou A (2002) The architecture of cartilage: elemental maps and scanning transmission ion microscopy/tomography. Nucl Instrum Methods Phys Res, Sect B 188(1):1–8.  https://doi.org/10.1016/S0168-583X(01)01001-1 CrossRefGoogle Scholar
  11. 11.
    Blewis ME, Nugent-Derfus GE, Schmidt TA, Schumacher BL, Sah RL (2007) A model of synovial fluid lubricant composition in normal and injured joints. Eur Cell Mater 13:26–39CrossRefGoogle Scholar
  12. 12.
    Swan A, Amer H, Dieppe P (2002) The value of synovial fluid assays in the diagnosis of joint disease: a literature survey. Ann Rheum Dis 61(6):493–498.  https://doi.org/10.1136/ard.61.6.493 CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Li Y, Yang Q, Li M, Song Y (2016) Rate-dependent interface capture beyond the coffee-ring effect. Sci Rep 6:24628.  https://doi.org/10.1038/srep24628 CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Li B, Singer NG, Yeni YN, Haggins DG, Barnboym E, Oravec D, Lewis S, Akkus O (2016) A point-of-care Raman spectroscopy–based device for the diagnosis of gout and pseudogout: comparison with the clinical standard microscopy. Arthritis Rheumatol  68(7):1751–1757.  https://doi.org/10.1002/art.39638
  15. 15.
    Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, Im H-J (2017) Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res 5:16044.  https://doi.org/10.1038/boneres.2016.44 CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Pendleton A, Arden N, Dougados M, Doherty M, Bannwarth B, Bijlsma JW, Cluzeau F, Cooper C, Dieppe PA, Gunther KP, Hauselmann HJ, Herrero-Beaumont G, Kaklamanis PM, Leeb B, Lequesne M, Lohmander S, Mazieres B, Mola EM, Pavelka K, Serni U, Swoboda B, Verbruggen AA, Weseloh G, Zimmermann-Gorska I (2000) EULAR recommendations for the management of knee osteoarthritis: report of a task force of the standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis 59(12):936–944CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Zhang W, Doherty M, Arden N, Bannwarth B, Bijlsma J, Gunther KP, Hauselmann HJ, Herrero-Beaumont G, Jordan K, Kaklamanis P, Leeb B, Lequesne M, Lohmander S, Mazieres B, Martin-Mola E, Pavelka K, Pendleton A, Punzi L, Swoboda B, Varatojo R, Verbruggen G, Zimmermann-Gorska I, Dougados M (2005) EULAR evidence based recommendations for the management of hip osteoarthritis: report of a task force of the EULAR standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 64(5):669–681.  https://doi.org/10.1136/ard.2004.028886 CrossRefGoogle Scholar
  18. 18.
    Esmonde-White KA, Esmonde-White FW, Morris MD, Roessler BJ (2011) Fiber-optic Raman spectroscopy of joint tissues. Analyst 136(8):1675–1685.  https://doi.org/10.1039/c0an00824a CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Takahashi Y, Sugano N, Takao M, Sakai T, Nishii T, Pezzotti G (2014) Raman spectroscopy investigation of load-assisted microstructural alterations in human knee cartilage: preliminary study into diagnostic potential for osteoarthritis. J Mech Behav Biomed Mater 31:77–85.  https://doi.org/10.1016/j.jmbbm.2013.02.014 CrossRefGoogle Scholar
  20. 20.
    Kumar R, Gronhaug KM, Afseth NK, Isaksen V, de Lange Davies C, Drogset JO, Lilledahl MB (2015) Optical investigation of osteoarthritic human cartilage (ICRS grade) by confocal Raman spectroscopy: a pilot study. Anal Bioanal Chem 407(26):8067–8077.  https://doi.org/10.1007/s00216-015-8979-5 CrossRefGoogle Scholar
  21. 21.
    Buchwald T, Niciejewski K, Kozielski M, Szybowicz M, Siatkowski M, Krauss H (2012) Identifying compositional and structural changes in spongy and subchondral bone from the hip joints of patients with osteoarthritis using Raman spectroscopy. J Biomed Opt 17(1):017007.  https://doi.org/10.1117/1.jbo.17.1.017007 CrossRefGoogle Scholar
  22. 22.
    Kerns JG, Gikas PD, Buckley K, Shepperd A, Birch HL, McCarthy I, Miles J, Briggs TW, Keen R, Parker AW, Matousek P, Goodship AE (2014) Evidence from Raman spectroscopy of a putative link between inherent bone matrix chemistry and degenerative joint disease. Arthritis Rheum 66(5):1237–1246.  https://doi.org/10.1002/art.38360 CrossRefGoogle Scholar
  23. 23.
    Tomanik M, Nikodem A, Filipiak J (2016) Microhardness of human cancellous bone tissue in progressive hip osteoarthritis. J Mech Behav Biomed Mater 64:86–93.  https://doi.org/10.1016/j.jmbbm.2016.07.022 CrossRefGoogle Scholar
  24. 24.
    Dehring KA, Smukler AR, Roessler BJ, Morris MD (2006) Correlating changes in collagen secondary structure with aging and defective type II collagen by Raman spectroscopy. Appl Spectrosc 60(4):366–372.  https://doi.org/10.1366/000370206776593582 CrossRefGoogle Scholar
  25. 25.
    Yu DG, Ding HF, Mao YQ, Liu M, Yu B, Zhao X, Wang XQ, Li Y, Liu GW, Nie SB, Liu S, Zhu ZA (2013) Strontium ranelate reduces cartilage degeneration and subchondral bone remodeling in rat osteoarthritis model. Acta Pharmacol Sin 34(3):393–402.  https://doi.org/10.1038/aps.2012.167 CrossRefPubMedCentralGoogle Scholar
  26. 26.
    de Souza RA, Xavier M, Mangueira NM, Santos AP, Pinheiro AL, Villaverde AB, Silveira L Jr (2014) Raman spectroscopy detection of molecular changes associated with two experimental models of osteoarthritis in rats. Lasers Med Sci 29(2):797–804.  https://doi.org/10.1007/s10103-013-1423-1 CrossRefGoogle Scholar
  27. 27.
    Mangueira NM, Xavier M, de Souza RA, Salgado MA, Silveira L Jr, Villaverde AB (2015) Effect of low-level laser therapy in an experimental model of osteoarthritis in rats evaluated through Raman spectroscopy. Photomed Laser Surg 33(3):145–153.  https://doi.org/10.1089/pho.2014.3744 CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Inzana JA, Maher JR, Takahata M, Schwarz EM, Berger AJ, Awad HA (2013) Bone fragility beyond strength and mineral density: Raman spectroscopy predicts femoral fracture toughness in a murine model of rheumatoid arthritis. J Biomech 46(4):723–730.  https://doi.org/10.1016/j.jbiomech.2012.11.039 CrossRefGoogle Scholar
  29. 29.
    Takahata M, Maher JR, Juneja SC, Inzana J, Xing L, Schwarz EM, Berger AJ, Awad HA (2012) Mechanisms of bone fragility in a mouse model of glucocorticoid-treated rheumatoid arthritis: implications for insufficiency fracture risk. Arthritis Rheum 64(11):3649–3659.  https://doi.org/10.1002/art.34639 CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Maher JR, Takahata M, Awad HA, Berger AJ (2011) Raman spectroscopy detects deterioration in biomechanical properties of bone in a glucocorticoid-treated mouse model of rheumatoid arthritis. J Biomed Opt 16(8):087012.  https://doi.org/10.1117/1.3613933 CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Esmonde-White KA, Mandair GS, Raaii F, Jacobson JA, Miller BS, Urquhart AG, Roessler BJ, Morris MD (2009) Raman spectroscopy of synovial fluid as a tool for diagnosing osteoarthritis. J Biomed Opt 14(3):034013–034013.  https://doi.org/10.1117/1.3130338 CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Esmonde-White KA, Le Clair SV, Roessler BJ, Morris MD (2008) Effect of conformation and drop properties on surface-enhanced Raman spectroscopy of dried biopolymer drops. Appl Spectrosc 62(5):503–511.  https://doi.org/10.1366/000370208784344370 CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kumar R, Singh GP, Gronhaug KM, Afseth NK, de Lange Davies C, Drogset JO, Lilledahl MB (2015) Single cell confocal Raman spectroscopy of human osteoarthritic chondrocytes: a preliminary study. Int J Mol Sci 16(5):9341–9353.  https://doi.org/10.3390/ijms16059341 CrossRefPubMedCentralGoogle Scholar
  34. 34.
    So AK, Martinon F (2017) Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol 13:639.  https://doi.org/10.1038/nrrheum.2017.155 CrossRefGoogle Scholar
  35. 35.
    Rosenthal AK, Ryan LM (2016) Calcium pyrophosphate deposition disease. N Engl J Med 374(26):2575–2584.  https://doi.org/10.1056/NEJMra1511117 CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Richette P, Doherty M, Pascual E, Barskova V, Becce F, Castañeda-Sanabria J, Coyfish M, Guillo S, Jansen TL, Janssens H, Lioté F, Mallen C, Nuki G, Perez-Ruiz F, Pimentao J, Punzi L, Pywell T, So A, Tausche AK, Uhlig T, Zavada J, Zhang W, Tubach F, Bardin T (2016) 2016 updated EULAR evidence-based recommendations for the management of gout. Ann Rheum Dis 76(1):29–42.  https://doi.org/10.1136/annrheumdis-2016-209707
  37. 37.
    Neogi T, Jansen TLTA, Dalbeth N, Fransen J, Schumacher HR, Berendsen D, Brown M, Choi H, Edwards NL, Janssens HJEM, Lioté F, Naden RP, Nuki G, Ogdie A, Perez-Ruiz F, Saag K, Singh JA, Sundy JS, Tausche A-K, Vaquez-Mellado J, Yarows SA, Taylor WJ (2015) 2015 gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 74(10):1789CrossRefPubMedCentralGoogle Scholar
  38. 38.
    McGill N, Dieppe PA, Bowden M, Gardiner DJ, Hall M (1991) Identification of pathological mineral deposits by Raman microscopy. Lancet (London, England) 337(8733):77–78CrossRefGoogle Scholar
  39. 39.
    Yang S, Li B, Slipchenko MN, Akkus A, Singer NG, Yeni YN, Akkus O (2013) Laser wavelength dependence of background fluorescence in Raman spectroscopic analysis of synovial fluid from symptomatic joints. J Raman Spectrosc 44(8):1089–1095.  https://doi.org/10.1002/jrs.4338 CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Li B, Yang S, Akkus O (2014) A customized Raman system for point-of-care detection of arthropathic crystals in the synovial fluid. Analyst 139(4):823–830.  https://doi.org/10.1039/c3an02062b CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Abhishek A, Curran DJ, Bilwani F, Jones AC, Towler MR, Doherty M (2016) In vivo detection of monosodium urate crystal deposits by Raman spectroscopy-a pilot study. Rheumatology (Oxford, England) 55(2):379–380.  https://doi.org/10.1093/rheumatology/kev339 CrossRefGoogle Scholar
  42. 42.
    Nalbant S, Martinez JAM, Kitumnuaypong T, Clayburne G, Sieck M, Schumacher HR (2003) Synovial fluid features and their relations to osteoarthritis severity: new findings from sequential studies. Osteoarthr Cartil 11(1):50–54.  https://doi.org/10.1053/joca.2002.0861 CrossRefGoogle Scholar
  43. 43.
    Fuerst M, Lammers L, Schafer F, Niggemeyer O, Steinhagen J, Lohmann CH, Ruther W (2010) Investigation of calcium crystals in OA knees. Rheumatol Int 30(5):623–631.  https://doi.org/10.1007/s00296-009-1032-2 CrossRefGoogle Scholar
  44. 44.
    Levillain A, Boulocher C, Kaderli S, Viguier E, Hannouche D, Hoc T, Magoariec H (2015) Meniscal biomechanical alterations in an ACLT rabbit model of early osteoarthritis. Osteoarthr Cartil 23(7):1186–1193.  https://doi.org/10.1016/j.joca.2015.02.022 CrossRefGoogle Scholar
  45. 45.
    Doumas C, Vazirani RM, Clifford PD, Owens P (2007) Acute calcific periarthritis of the hand and wrist: a series and review of the literature. Emerg Radiol 14(4):199–203.  https://doi.org/10.1007/s10140-007-0626-9 CrossRefGoogle Scholar
  46. 46.
    Urist MR, Moss MJ, Adams JM Jr (1964) Calcification of tendon. A triphasic local mechanism. Arch Pathol 77:594–608Google Scholar
  47. 47.
    Uhthoff HK, Sarkar K, Maynard JA (1976) Calcifying tendinitis: a new concept of its pathogenesis. Clin Orthop Relat Res 118:164–168Google Scholar
  48. 48.
    Chiou H-J, Hung S-C, Lin S-Y, Wei Y-S, Li M-J (2010) Correlations among mineral components, progressive calcification process and clinical symptoms of calcific tendonitis. Rheumatology 49(3):548–555.  https://doi.org/10.1093/rheumatology/kep359 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  • Corina D. Hosu
    • 1
  • Vlad Moisoiu
    • 2
  • Andrei Stefancu
    • 2
  • Elisabeta Antonescu
    • 3
  • Loredana F. Leopold
    • 4
  • Nicolae Leopold
    • 2
    Email author
  • Daniela Fodor
    • 1
  1. 1.2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and PharmacyCluj-NapocaRomania
  2. 2.Faculty of PhysicsBabeș-Bolyai UniversityCluj-NapocaRomania
  3. 3.Faculty of MedicineLucian Blaga UniversitySibiuRomania
  4. 4.Faculty of Food Science and TechnologyUniversity of Agricultural Sciences and Veterinary MedicineCluj-NapocaRomania

Personalised recommendations