Skip to main content

Advertisement

Log in

Effectiveness of photopolymerization in composite resins using a novel 445-nm diode laser in comparison to LED and halogen bulb technology

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Challenges especially in the minimal invasive restorative treatment of teeth require further developments of composite polymerization techniques. These include, among others, the securing of a complete polymerization with moderate thermal stress for the pulp. The aim of this study is to compare current light curing sources with a blue diode laser regarding curing depth and heat generation during the polymerization process. A diode laser (445 nm), a LED, and a halogen lamp were used for polymerizing composite resins. The curing depth was determined according to the norm ISO 4049. Laser output powers of 0.1, 0.5, 1, and 2 W were chosen. The laser beam diameter was adapted to the glass rod of the LED and the halogen lamp (8 mm). The irradiation time was fixed at 40 s. To ascertain ΔT values, the surface and ground area temperatures of the cavities were simultaneously determined during the curing via a thermography camera and a thermocouple. The curing depths for the LED (3.3 mm), halogen lamp (3.1 mm) and laser(0.5/1 W) (3/3.3 mm) showed no significant differences (p < 0.05). The values of ΔTsurface as well as ΔTground also showed no significant differences among LED, halogen lamp, and laser(1 W). The ΔTsurface values were 4.1LED, 4.3halogen lamp, and 4.5 °C for the laser while the ΔTground values were 2.7LED, 2.6halogen lamp, and 2.9 °C for the laser. The results indicate that the blue diode laser (445 nm) is a feasible alternative for photopolymerization of complex composite resin restorations in dentistry by the use of selected laser parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sgolastra F, Severino M, Gatto R, Monaco A (2013) Effectiveness of diode laser as adjunctive therapy to scaling root planning in the treatment of chronic periodontitis: a meta-analysis. Lasers Med Sci 28(5):1393–1402. https://doi.org/10.1007/s10103-012-1181-5

    Article  PubMed  Google Scholar 

  2. Saydjari Y, Kuypers T, Gutknecht N (2016) Laser application in dentistry: irradiation effects of Nd:YAG 1064 nm and diode 810 nm and 980 nm in infected root canals – a literature overview. Biomed Res Int 2016:Article ID 8421656:1–10. https://doi.org/10.1155/2016/8421656

    Article  Google Scholar 

  3. Reichelt J, Winter J, Meister J, Frentzen M, Kraus D (2017) A novel blue light laser system for surgical applications in dentistry: evaluation of specific laser-tissue interactions in monolayer cultures. Clin Oral Investig 21(4):985–994. https://doi.org/10.1007/s00784-016-1864-6

    Article  PubMed  Google Scholar 

  4. Cook WD (1982) Spectral distributions of dental photopolymerization sources. J Dent Res 61(12):1436–1438. https://doi.org/10.1177/00220345820610121201

    Article  CAS  PubMed  Google Scholar 

  5. Stansbury JW (2000) Curing dental resins and composites by photopolymerization. J Esthet Dent 12(6):300–308. https://doi.org/10.1111/j.1708-8240.2000.tb00239.x

    Article  CAS  PubMed  Google Scholar 

  6. Leonard DL, Charlton DG, Roberts HW, Cohen ME (2002) Polymerization efficiency of LED curing lights. J Esthet Restor Dent 14(5):286–295. https://doi.org/10.1111/j.1708-8240.2002.tb00524.x

    Article  PubMed  Google Scholar 

  7. Heintze SD, Rousson V (2012) Clinical effectiveness of direct class II restorations – a meta-analysis. J Adhes Dent 14(5):407–431. https://doi.org/10.3290/j.jad.a28390

    Article  Google Scholar 

  8. Jandt KD, Mills RW (2013) A brief history of LED photopolymerization. Dent Mater 29(6):605–617. https://doi.org/10.1016/j.dental.2013.02.003

    Article  CAS  Google Scholar 

  9. Binnewies M (1986) Chemie in Glühlampen. Chemie Unserer Zeit 20(5):141–145 [German]. https://doi.org/10.1002/ciuz.19860200502

    Article  CAS  Google Scholar 

  10. Friedman J (1989) Variability of lamp characteristics in dental curing lights. J Esthet Dent 1(6):189–190. https://doi.org/10.1111/j.1708-8240.1989.tb00500.x

    Article  CAS  PubMed  Google Scholar 

  11. Jandt KD, Mills RW, Blackwell GB, Ashworth SH (2000) Depth of cure and compressive strength of dental composites cured with blue light emitting diodes (LEDs). Dent Mater 16(1):41–47. https://doi.org/10.1016/S0109-5641(99)00083-4

    Article  CAS  PubMed  Google Scholar 

  12. Rueggeberg FA (2011) State-of-the-art: dental photocuring – a review. Dent Mater 27(1):39–52. https://doi.org/10.1016/j.dental.2010.10.021

    Article  CAS  Google Scholar 

  13. Anić I, Pavelić B, Perić B, Matsumoto K (1996) In vitro pulp chamber temperature rises associated with the argon laser polymerization of composite resin. Lasers Surg Med 19(4):438–444. https://doi.org/10.1002/(SICI)1096-9101(1996)19:4<438::AID-LSM9>3.0.CO;2-T

    Article  PubMed  Google Scholar 

  14. Blankenau RJ, Powell GL, Kelsey WP, Barkmeier WW (1991) Post polymerization strength values of an argon laser cured resin. Lasers Surg Med 11(5):471–474. https://doi.org/10.1002/lsm.1900110513

    Article  CAS  PubMed  Google Scholar 

  15. Kelsey WP 3rd, Blankenau RJ, Powell GL, Barkmeier WW, Cavel WT, Whisenant BK (1989) Enhancement of physical properties of resin restorative materials by laser polymerization. Lasers Surg Med 9(6):623–627. https://doi.org/10.1002/lsm.1900090613

    Article  PubMed  Google Scholar 

  16. Kelsey WP, Blankenau RJ, Powell GL, Barkmeier WW, Stormberg EF (1992) Power and time requirements for use of the argon laser to polymerize composite resins. J Clin Laser Med Surg 10(4):273–278. https://doi.org/10.1089/clm.1992.10.273

    Article  CAS  PubMed  Google Scholar 

  17. Powell GL, Kelsey WP, Blankenau RJ, Barkmeier WW (1989) The use of an argon laser for polymerization of composite resin. J Esthet Dent 1(1):34–37. https://doi.org/10.1111/j.1708-8240.1989.tb01035.x

    Article  CAS  PubMed  Google Scholar 

  18. Potts TV, Petrou A (1990) Laser photopolymerization of dental materials with potential endodontic applications. J Endod 16(6):265–268. https://doi.org/10.1016/S0099-2399(06)81627-4

    Article  CAS  PubMed  Google Scholar 

  19. Rode KM, de Freitas PM, Lloret PR, Powell LG, Turbino ML (2009) Micro-hardness evaluation of a micro-hybrid composite resin light cured with halogen light, light-emitting diode and argon ion laser. Lasers Med Sci 24(1):87–92. https://doi.org/10.1007/s10103-007-0527-x

    Article  PubMed  Google Scholar 

  20. Rueggeberg FA, Ergle JW, Mettenburg DJ (2000) Polymerization depths of contemporary light-curing units using microhardness. J Esthet Dent 12(6):340–349

    Article  CAS  PubMed  Google Scholar 

  21. Ernst CP (2005) Aktuelle klinische Aspekte der Lichtpolymerisation. ZWR-Das Deutsche Zahnärzteblatt 114(11):513–517 [German]. https://doi.org/10.1055/s-2005-922467

    Article  Google Scholar 

  22. Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 19(4):515–530. https://doi.org/10.1016/0030-4220(65)90015-0

    Article  CAS  Google Scholar 

  23. Ericson D, Kidd E, McComb D, Mjör I, Noack MJ (2003) Minimally invasive dentistry—concepts and techniques in cariology. Oral Health Prev Dent 1(1):59–72

    PubMed  Google Scholar 

  24. Alonso V, Darriba IL, Caserio M (2017) Retrospective evaluation of posterior composite resin sandwich restorations with Herculite XRV: 18-year findings. Quintessence Int 48(2):93–101. https://doi.org/10.3290/j.qi.a37386

    Article  PubMed  Google Scholar 

  25. Małkiewicz K, Wychowański P, Olkowska-Truchanowicz J, Tykarska M, Czerwiński M, Wilczko M, Owoc A (2017) Uncompleted polymerization and cytotoxicity of dental restorative materials as potential health risk factors. Ann Agric Environ Med 24(4):618–623. https://doi.org/10.5604/12321966.1235159

    Article  CAS  PubMed  Google Scholar 

  26. ISO 4049 (2009) Dentistry - polymer-based restorative materials. EN ISO. International Organization for Standardization, Geneva, Switzerland, p 4049

    Google Scholar 

  27. Rueggeberg FA, Cole MA, Looney SW, Vickers A, Swift EJ (2009) Comparison of manufacturer-recommended exposure durations with those determined using biaxial flexure strength and scraped composite thickness among a variety of light-curing units. J Esthet Restor Dent 21(1):43–61. https://doi.org/10.1111/j.1708-8240.2008.00231.x

    Article  PubMed  Google Scholar 

  28. Price RB, Rueggeberg FA, Harlow J, Sullivan B (2016) Effect of mold type, diameter, and uncured composite removal method on depth of cure. Clin Oral Investig 20(7):1699–1707. https://doi.org/10.1007/s00784-015-1672-4

    Article  PubMed  Google Scholar 

  29. Flury S, Hayoz S, Peutzfeldt A, Hüsler J, Lussi A (2012) Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dent Mater 28(5):521–528. https://doi.org/10.1016/j.dental.2012.02.002

    Article  CAS  Google Scholar 

  30. DeWald JP, Ferracane JL (1987) A comparison of four modes of evaluating depth of cure of light-activated composites. J Dent Res 66(3):727–730. https://doi.org/10.1177/00220345870660030401

    Article  CAS  PubMed  Google Scholar 

  31. Lussi A, Zimmerli B, Aregger T, Portmann P (2005) Composite curing with new LED equipment. Schweiz Monatsschr Zahnmed 115(12):1182–1187 [German]

    PubMed  Google Scholar 

  32. Halvorson RH, Erickson RL, Davidson CL (2002) Energy dependent polymerization of resin-based composite. Dent Mater 18(6):463–469. https://doi.org/10.1016/S0109-5641(01)00069-0

    Article  CAS  PubMed  Google Scholar 

  33. Steinhaus J, Hausnerova B, Haenel T, Großgarten M, Möginger B (2014) Curing kinetics of visible light curing dental resin composites investigated by dielectric analysis (DEA). Dent Mater 30(3):372–380. https://doi.org/10.1016/j.dental.2013.12.013

    Article  CAS  PubMed  Google Scholar 

  34. Shortall AC, Wilson HJ, Harrington E (1995) Depth of cure of radiation-activated composite restoratives-influence of shade and opacity. J Oral Rehabil 22(5):337–342. https://doi.org/10.1111/j.1365-2842.1995.tb00782.x

    Article  CAS  PubMed  Google Scholar 

  35. Bouillaguet S, Caillot G, Forchelet J, Cattani-Lorente M, Wataha JC, Krejci I (2005) Thermal risks from LED-and high-intensity QTH-curing units during polymerization of dental resins. J Biomed Mater Res B Appl Biomater 72(2):260–267. https://doi.org/10.1002/jbm.b.30143

    Article  CAS  Google Scholar 

  36. Ferracane JL (2011) Resin composite—state of the art. Dent Mater 27(1):29–38. https://doi.org/10.1016/j.dental.2010.10.020

    Article  CAS  PubMed  Google Scholar 

  37. Manhart J (2010) Neues Konzept zum Ersatz von Dentin in der kompositbasierten Seitenzahnversorgung. ZWR-Das Deutsche Zahnärzteblatt 119(03):118–125 [German]. https://doi.org/10.1055/s-0030-1253176

    Article  Google Scholar 

  38. Czichos H, Skotzki B, Werkstoffe SFG (2012) In: Akademischer Verein Hütte EV, Czichos H, Hennecke M (eds) Hütte – Das Ingenieurwissen, 34rd edn. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22850-6

    Chapter  Google Scholar 

  39. Lancaster P, Brettle D, Carmichael F, Clerehugh V (2017) In-vitro thermal maps to characterize human dental enamel and dentin. Front Physiol 8(461):1–8. https://doi.org/10.3389/fphys.2017.00461

    Article  Google Scholar 

  40. Gente M, Apel E, Dikmen G, Hobeck C, Schipper H, Schmitz K, Wolkenhauer V (2007) Der Einfluss des Polymerisationslampentyps auf die Aushärtungstiefe dentaler Kompositfüllungen. ZWR-Das Deutsche Zahnärzteblatt 116(9):408–412 [German]. https://doi.org/10.1055/s-2007-991503

    Article  Google Scholar 

  41. Moore BK, Platt JA, Borges G, Chu TG, Katsilieri I (2008) Depth of cure of dental resin composites: ISO 4049 depth and microhardness of types of materials and shades. Oper Dent 33(4):408–412. https://doi.org/10.2341/07-104

    Article  Google Scholar 

  42. Price RB, Derand T, Sedarous M, Andreou P, Loney RW (2000) Effect of distance on the power density from two light guides. J Esthet Dent 12(6):320–327. https://doi.org/10.1111/j.1708-8240.2000.tb00241.x

    Article  CAS  PubMed  Google Scholar 

  43. Uhl A, Mills RW, Jandt KD (2003) Polymerization and light-induced heat of dental composites cured with LED and halogen technology. Biomaterials 24(10):1809–1820. https://doi.org/10.1016/S0142-9612(02)00585-9

    Article  CAS  Google Scholar 

  44. Staehle HJ, Wolff D, Frese C (2015) More conservative dentistry: clinical long-term results of direct composite resin restorations. Quintessence Int 46(5):373–380. https://doi.org/10.3290/j.qi.a33718

    Article  PubMed  Google Scholar 

  45. Ebert J, Frankenberger R, Petschelt A (2012) A novel approach for filling tunnel-prepared teeth with composites of two different consistencies: a case presentation. Quintessence Int 43(2):93–96

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dentsply Sirona Germany for providing the blue diode laser system.

Funding

This study was funded under the research budget of AMLaReBO (Center of Applied Medical Laser Research and Biomedical Optics) at Bonn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Meister.

Ethics declarations

Materials sciences

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Materials sciences

Informed consent

Materials sciences

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drost, T., Reimann, S., Frentzen, M. et al. Effectiveness of photopolymerization in composite resins using a novel 445-nm diode laser in comparison to LED and halogen bulb technology. Lasers Med Sci 34, 729–736 (2019). https://doi.org/10.1007/s10103-018-2651-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-018-2651-1

Keywords

Navigation