Advertisement

The effects of photobiomodulation therapy on mouse pre-osteoblast cell line MC3T3-E1 proliferation and apoptosis via miR-503/Wnt3a pathway

  • Qiushi Li
  • Chen Li
  • Si Xi
  • Xianjing Li
  • Lina Ding
  • Meihua Li
Original Article

Abstract

Photobiomodulation therapy (PBMT) has been demonstrated as regulating osteoblast proliferation. MicroRNAs (miRNAs) are involved in various pathophysiologic processes in osteoblast, but the role of miRNAs in the PBMT-based promotion of osteoblast proliferation remains unclear. This study aimed to investigate the effects of PBMT treatment (3.75 J/cm2) on mouse pre-osteoblast cell line MC3T3-E1 proliferation and apoptosis via the miR-503/Wnt3a pathway; meanwhile, detect the expressions of miR-503 and Wnt3a after PBMT treatment and the role of miR-503 in regulating Wnt signaling molecules Wnt3a, β-catenin, Runx2, apoptotic proteins caspase-3, and Bcl-2 in vitro. The PBMT parameters were as follows: 808 nm continuous wavelength, 0.401 W output power, 0.042 W/cm2 power density, 9.6 cm2 spot size, 36 J energy, 3.75 J/cm2 energy density, 90 s irradiation for three times per 12 h, 14.5 cm distance of the laser source and the angle of divergence of the laser beam was 7°. In our present study, the target relationship was predicted and verified by bioinformatics analysis and luciferase reporter assays. Gene mRNA and protein expressions were examined by qPCR and western blot analysis. The MTT method was used to evaluate the effect of miR-503 on MC3T3-E1 cells proliferation. And cell apoptosis was examined by flow cytometry. The results showed that PBMT treatment reduced the expression of miR-503 and increased the level of Wnt3a (p < 0.01). Bioinformatics analysis and luciferase reporter assays revealed that Wnt3a was a target of miR-503, and Wnt3a was regulated by miR-503. Furthermore, miR-503 was found to functionally inhibit proliferation and promote apoptosis (p < 0.01). And during this process, Wnt3a, β-catenin, Runx2, and Bcl-2 expressions were significantly inhibited (p < 0.01); however, caspase-3 level was upregulated (p < 0.01). These results suggest that miR-503 plays a role in osteoblast proliferation and apoptosis in response to PBMT, which is potentially amenable to therapeutic manipulation for clinical application.

Keywords

PBMT miR-503 Wnt3a Signaling pathway Proliferation 

Notes

Acknowledgements

The authors acknowledge the help from Dr. Meihua Li.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Karlekar A, Bharati S, Saxena R et al (2015) Assessment of feasibility and efficacy of class IV laser therapy for postoperative pain relief in off-pump coronary artery bypass surgery patients: a pilot study. Ann Card Anaesth 18(3):317–322.  https://doi.org/10.4103/0971-9784.159800 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Prasad RS, Pai A (2013) Assessment of immediate pain relief with laser treatment in recurrent aphthous stomatitis. Oral Surg Oral Med Oral Pathol Oral Radiol 116(2):189–193.  https://doi.org/10.1016/j.oooo.2013.02.011 CrossRefGoogle Scholar
  3. 3.
    Li WH, Fassih A, Binner C et al (2018) Low-level red LED light inhibits hyperkeratinization and inflammation induced by unsaturated fatty acid in an in vitro model mimicking acne. Lasers Surg Med 50(2):158–165.  https://doi.org/10.1002/lsm.22747 CrossRefPubMedGoogle Scholar
  4. 4.
    Hwang K, Kim SG, Kim DJ et al (2005) Laser welding of rat’s facial nerve. J Craniofac Surg 16(6):1102–1106CrossRefGoogle Scholar
  5. 5.
    Aliasl J, Barikbin B, Khoshzaban F et al (2015) Effect of Arnebia euchroma ointment on post-laser wound healing in rats. J Cosmet Laser Ther 17(1):41–45.  https://doi.org/10.3109/14764172.2014.968583 CrossRefPubMedGoogle Scholar
  6. 6.
    Chaves ME, Araujo AR, Piancastelli AC et al (2014) Effects of low-power light therapy on wound healing: LASER x LED. An Bras Dermatol 89(4):616–623CrossRefGoogle Scholar
  7. 7.
    DiVito EE, Benjamin SD, LeBeau J (2014) Advances in laser dentistry: expanding beyond periodontal care. Compend Contin Educ Dent 35(10):734–735PubMedGoogle Scholar
  8. 8.
    Kang Y, Rabie AB, Wong RW (2014) A review of laser applications in orthodontics. Int J Orthod Milwaukee 25(1):47–56PubMedGoogle Scholar
  9. 9.
    Saito A, Morimoto Y, Yoshimatsu T et al (2012) Present and future for LLLT in the area of orthopedics. Masui 61(7):706–717PubMedGoogle Scholar
  10. 10.
    Pagin MT, de Oliveira FA, Oliveira RC et al (2014) Laser and light-emitting diode effects on pre-osteoblast growth and differentiation. Lasers Med Sci 29(1):55–59.  https://doi.org/10.1007/s10103-012-1238-5 CrossRefPubMedGoogle Scholar
  11. 11.
    Usumez A, Cengiz B, Oztuzcu S et al (2014) Effects of laser irradiation at different wavelengths (660, 810, 980, and 1,064 nm) on mucositis in an animal model of wound healing. Lasers Med Sci 29(6):1807–1813.  https://doi.org/10.1007/s10103-013-1336-z CrossRefPubMedGoogle Scholar
  12. 12.
    Peplow PV, Chung TY, Ryan B et al (2011) Laser photobiomodulation of gene expression and release of growth factors and cytokines from cells in culture: a review of human and animal studies. Photomed Laser Surg 29(5):285–304.  https://doi.org/10.1089/pho.2010.2846 CrossRefPubMedGoogle Scholar
  13. 13.
    Li Q, Chen Y, Dong S et al (2017) Laser irradiation promotes the proliferation of mouse pre-osteoblast cell line MC3T3-E1 through hedgehog signaling pathway. Lasers Med Sci 32(7):1489–1496.  https://doi.org/10.1007/s10103-017-2269-8 CrossRefPubMedGoogle Scholar
  14. 14.
    Imai H, Matsubayashi S, Santo ML et al (1994) A 85-year-old right-handed woman with aphasia and left hemiparesis. No to shinkei 46(4):397–405PubMedGoogle Scholar
  15. 15.
    Wang J, Huang W, Wu Y et al (2012) MicroRNA-193 pro-proliferation effects for bone mesenchymal stem cells after low-level laser irradiation treatment through inhibitor of growth family, member 5. Stem Cells Dev 21(13):2508–2519.  https://doi.org/10.1089/scd.2011.0695 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ozawa Y, Shimizu N, Kariya G et al (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22(4):347–354CrossRefGoogle Scholar
  17. 17.
    Schubert MM, Eduardo FP, Guthrie KA et al (2007) A phase III randomized double-blind placebo-controlled clinical trial to determine the efficacy of low level laser therapy for the prevention of oral mucositis in patients undergoing hematopoietic cell transplantation. Support Care Cancer 15(10):1145–1154.  https://doi.org/10.1007/s00520-007-0238-7 CrossRefPubMedGoogle Scholar
  18. 18.
    Wang X, Tang S, Le SY et al (2008) Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 3(7):e2557.  https://doi.org/10.1371/journal.pone.0002557 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Thompson BJ, Cohen SM (2006) The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126(4):767–774.  https://doi.org/10.1016/j.cell.2006.07.013 CrossRefPubMedGoogle Scholar
  20. 20.
    Li X, Carthew RW (2005) A microRNA mediates EGF receptor signaling and promotes photoreceptor differentiation in the Drosophila eye. Cell 123(7):1267–1277.  https://doi.org/10.1016/j.cell.2005.10.040 CrossRefPubMedGoogle Scholar
  21. 21.
    Foekens JA, Sieuwerts AM, Smid M et al (2008) Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci U S A 105(35):13021–13026.  https://doi.org/10.1073/pnas.0803304105 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Arfat Y, Xiao WZ, Ahmad M et al (2015) Role of microRNAs in osteoblasts differentiation and bone disorders. Curr Med Chem 22(6):748–758CrossRefGoogle Scholar
  23. 23.
    Papaioannou G, Mirzamohammadi F, Kobayashi T (2014) MicroRNAs involved in bone formation. Cell Mol Life Sci 71(24):4747–4761.  https://doi.org/10.1007/s00018-014-1700-6 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pi C, Li YP, Zhou X et al (2015) The expression and function of microRNAs in bone homeostasis. Front Biosci 20:119–138CrossRefGoogle Scholar
  25. 25.
    Liu L, Liu M, Li R et al (2017) MicroRNA-503-5p inhibits stretch-induced osteogenic differentiation and bone formation. Cell Biol Int 41(2):112–123.  https://doi.org/10.1002/cbin.10704 CrossRefPubMedGoogle Scholar
  26. 26.
    Niehrs C (2012) The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 13(12):767–779.  https://doi.org/10.1038/nrm3470 CrossRefGoogle Scholar
  27. 27.
    Khosla S, Westendorf JJ, Oursler MJ (2008) Building bone to reverse osteoporosis and repair fractures. J Clin Invest 118(2):421–428.  https://doi.org/10.1172/JCI33612 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Weivoda MM, Ruan M, Hachfeld CM et al (2016) Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways. J Bone Miner Res 31(1):65–75.  https://doi.org/10.1002/jbmr.2599 CrossRefPubMedGoogle Scholar
  29. 29.
    Bennett CN, Ouyang H, Ma YL et al (2007) Wnt10b increases postnatal bone formation by enhancing osteoblast differentiation. J Bone Miner Res 22(12):1924–1932.  https://doi.org/10.1359/jbmr.070810 CrossRefPubMedGoogle Scholar
  30. 30.
    Boland GM, Perkins G, Hall DJ et al (2004) Wnt 3a promotes proliferation and suppresses osteogenic differentiation of adult human mesenchymal stem cells. J Cell Biochem Suppl 93(6):1210–1230.  https://doi.org/10.1002/jcb.20284 CrossRefGoogle Scholar
  31. 31.
    Keupp K, Beleggia F, Kayserili H et al (2013) Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet 92(4):565–574.  https://doi.org/10.1016/j.ajhg.2013.02.010 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Aleksic V, Aoki A, Iwasaki K et al (2010) Low-level Er:YAG laser irradiation enhances osteoblast proliferation through activation of MAPK/ERK. Lasers Med Sci 25(4):559–569.  https://doi.org/10.1007/s10103-010-0761-5 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hirata S, Kitamura C, Fukushima H et al (2010) Low-level laser irradiation enhances BMP-induced osteoblast differentiation by stimulating the BMP/Smad signaling pathway. J Cell Biochem Suppl 111(6):1445–1452.  https://doi.org/10.1002/jcb.22872 CrossRefGoogle Scholar
  34. 34.
    Feng J, Sun Q, Liu L et al (2015) Photoactivation of TAZ via Akt/GSK3beta signaling pathway promotes osteogenic differentiation. Int J Biochem Cell Biol 66:59–68.  https://doi.org/10.1016/j.biocel.2015.07.002 CrossRefPubMedGoogle Scholar
  35. 35.
    Schindl A, Schindl M, Pernerstorfer-Schon H et al (2000) Low-intensity laser therapy: a review. J Investig Med 48(5):312–326PubMedGoogle Scholar
  36. 36.
    Khori V, Alizadeh AM, Gheisary Z et al (2016) The effects of low-level laser irradiation on breast tumor in mice and the expression of Let-7a, miR-155, miR-21, miR125, and miR376b. Lasers Med Sci 31(9):1775–1782.  https://doi.org/10.1007/s10103-016-2049-x CrossRefPubMedGoogle Scholar
  37. 37.
    Li L, Sarver AL, Khatri R et al (2014) Sequential expression of miR-182 and miR-503 cooperatively targets FBXW7, contributing to the malignant transformation of colon adenoma to adenocarcinoma. J Pathol 234(4):488–501.  https://doi.org/10.1002/path.4407 CrossRefPubMedGoogle Scholar
  38. 38.
    Long J, Ou C, Xia H et al (2015) MiR-503 inhibited cell proliferation of human breast cancer cells by suppressing CCND1 expression. Tumour Biol 36(11):8697–8702.  https://doi.org/10.1007/s13277-015-3623-8 CrossRefPubMedGoogle Scholar
  39. 39.
    Zhou B, Ma R, Si W et al (2013) MicroRNA-503 targets FGF2 and VEGFA and inhibits tumor angiogenesis and growth. Cancer Lett 333(2):159–169.  https://doi.org/10.1016/j.canlet.2013.01.028 CrossRefPubMedGoogle Scholar
  40. 40.
    Wu J, Li A, Zhang P et al (2016) Increased expression of microRNA-503 and reduced expression of kangai-1 in B-cell non-Hodgkin’s lymphoma. Exp Ther Med 11(3):917–922.  https://doi.org/10.3892/etm.2016.2971 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zhou Y, Deng L, Zhao D et al (2016) MicroRNA-503 promotes angiotensin II-induced cardiac fibrosis by targeting Apelin-13. J Cell Mol Med 20(3):495–505.  https://doi.org/10.1111/jcmm.12754 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Chen C, Cheng P, Xie H et al (2014) MiR-503 regulates osteoclastogenesis via targeting RANK. J Bone Miner Res 29(2):338–347.  https://doi.org/10.1002/jbmr.2032 CrossRefPubMedGoogle Scholar
  43. 43.
    Jing D, Zhai M, Tong S et al (2016) Pulsed electromagnetic fields promote osteogenesis and osseointegration of porous titanium implants in bone defect repair through a Wnt/beta-catenin signaling-associated mechanism. Sci Rep 6:32045.  https://doi.org/10.1038/srep32045 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Li J, Yin X, Huang L et al (2017) Relationships among bone quality, implant osseointegration, and Wnt signaling. J Dent Res 96(7):822–831.  https://doi.org/10.1177/0022034517700131 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mouraret S, Hunter DJ, Bardet C et al (2014) Improving oral implant osseointegration in a murine model via Wnt signal amplification. J Clin Periodontol 41(2):172–180.  https://doi.org/10.1111/jcpe.12187 CrossRefPubMedGoogle Scholar
  46. 46.
    Jullien N, Maudinet A, Leloutre B et al (2012) Downregulation of ErbB3 by Wnt3a contributes to wnt-induced osteoblast differentiation in mesenchymal cells. J Cell Biochem Suppl 113(6):2047–2056.  https://doi.org/10.1002/jcb.24076 CrossRefGoogle Scholar
  47. 47.
    Karner CM, Esen E, Chen J et al (2016) Wnt protein signaling reduces nuclear acetyl-CoA levels to suppress gene expression during osteoblast differentiation. J Biol Chem 291(25):13028–13039.  https://doi.org/10.1074/jbc.M115.708578 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kramer I, Halleux C, Keller H et al (2010) Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol 30(12):3071–3085.  https://doi.org/10.1128/MCB.01428-09 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Shin HR, Islam R, Yoon WJ et al (2016) Pin1-mediated modification prolongs the nuclear retention of beta-catenin in Wnt3a-induced osteoblast differentiation. J Biol Chem 291(11):5555–5565.  https://doi.org/10.1074/jbc.M115.698563 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.VIP Integrated Department, School and Hospital of StomatologyJilin UniversityChangchunChina
  2. 2.Department of Oral Medicine, School and Hospital of StomatologyJilin UniversityChangchunChina
  3. 3.Department of StomatologyAffiliated Hospital of Hainan Medical UniversityHaikouChina
  4. 4.Department of prosthodontics, School and Hospital of StomatologyJilin UniversityChangchunChina
  5. 5.The Stomatology Department of the Second HospitalJilin UniversityChangchunChina

Personalised recommendations