Skip to main content

Advertisement

Log in

Er:YAG 2,940-nm laser fiber in endodontic treatment: a help in removing smear layer

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Cleaning and disinfection of the root canal system are some of the most important goals in endodontic therapy. The aim of this preliminary study is to assess the effectiveness of Er:YAG laser fiber in removing the smear layer produced during root canal walls instrumentation. Forty-eight single-rooted teeth were prepared with manual and rotary Ni-Ti instruments, in addition to 2.5 % NaOCl irrigation. Samples were randomly subdivided into groups and treated with: three irradiations of 5 s each, with 300-μm Er:YAG endodontic fiber, 1 W and 2.5 % NaOCl solution (A Group); two laser irradiations with 17 % EDTA solution and 2.5 % NaOCl solution (B Group); laser irradiation plus 17 % EDTA solution and 2.5 % NaOCl (C Group); only in the final wash of 17 % EDTA (control group D). During laser treatment, temperature variations were analyzed by using thermocouple and thermal camera devices in order to test both deep and superficial temperatures. Each sample was finally observed by scanning electron microscope (SEM) at the coronal, medium, and apical thirds at ×500 magnification and blindly scored depending on the amount of smear layer. Statistical analysis of the results was conducted using the Kruskal–Wallis and Mann–Whitney test to determine the eventual significant differences between the quantity of smear layer in each group and between the groups at coronal, medium, and apical third: a p value <0.05 was considered significant. The thermal analysis realized by thermocouple with the used parameters demonstrated that laser endodontic fiber produces an average deep temperature increase of 3.5 ± 0.4 °C; analysis performed with a thermal camera showed an average superficial temperature increase of 1.3 ± 0.2 °C produced by laser endodontic fiber use. Deep and superficial temperatures fall immediately after irradiation possibly without causing structural damage or anatomical alteration inside the root canal and neither on periodontal tissues. SEM analysis showed that specimens of group B had the highest level of cleaning in every third, with a significant difference with groups D and A; group C samples showed a good percentage of cleaned tubules in apical and middle thirds, while group D teeth showed open dentinal tubules in coronal third, with a statistical difference with group A samples which were the worst cleaned. The Er:YAG fiber double irradiation with EDTA 17 % and NaOCl 2.5 % has been demonstrated to be effective in removing smear layer, even in the apical third which is described as the hardest area to clean during endodontic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Basmadjian-Charles CL, Farge P, Bourgeois DM, Lebrun T (2002) Factors influencing the long-term results of endodontic treatment: a review of the literature. Int Dent J 52(2):81–86

    Article  CAS  PubMed  Google Scholar 

  2. Sjögren U, Figdor D, Persson S, Sundqvist G (1997) Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int Endod J 30(5):297–306

    Article  PubMed  Google Scholar 

  3. Comb M, Smith DC (1975) A preliminary scanning electron microscopic study of root canals after endodontic procedures. J Endod 1(7):238–242

    Article  Google Scholar 

  4. Czonstkowsky M, Wilson EG, Holstein FA (1990) The smear layer in endodontics. Dent Clin North Am 34(1):13–25

    CAS  PubMed  Google Scholar 

  5. Schilder H (1974) Cleaning and shaping the root canal. Dent Clin North Am 18(2):269–296

    CAS  PubMed  Google Scholar 

  6. Siqueira JF Jr, Rôças IN (2008) Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endod 34(11):1291–1301

    Article  PubMed  Google Scholar 

  7. Haapsaalo M, Endal U, Zani H (2005) Eradication of endodontic infection by instrumentation and irrigation solutions. Endod Topics 10:77–102

    Article  Google Scholar 

  8. Gu LS, Kim JR, Ling J, Choi KK, Pashley DH, Tay FR (2009) Review of contemporary irrigant agitation techniques and devices. J Endod 35(6):791–804

    Article  PubMed  Google Scholar 

  9. Berutti E, Marini R, Angeretti A (1997) Penetration ability of different irrigants into dentinal tubules. J Endod 23(12):725–727

    Article  CAS  PubMed  Google Scholar 

  10. Siqueira JF Jr, Lima KC, Magalhães FA, Lopes HP, de Uzeda M (1999) Mechanical reduction of the bacterial population in the root canal by three instrumentation techniques. J Endod 25(5):332–335

    Article  PubMed  Google Scholar 

  11. Ruddle C (2002) Cleaning and shaping the root canal system. Cohen S, Burns R Eds.; pp 31–292

  12. De Moor RJ, Meire M, Goharkhay K, Moritz A, Vanobbergen J (2010) Efficacy of ultrasonic versus laser-activated irrigation to remove artificially placed dentin debris plugs. J Endod 36(9):1580.3

    PubMed  Google Scholar 

  13. Cozean C, Arcoria CJ, Pelagalli J, Powell GL (1997) Dentistry for the 21st century? Erbium:YAG laser for teeth. J Am Dent Assoc 128(8):1080–1087

    CAS  PubMed  Google Scholar 

  14. Roper MJ, White JM, Goodis HE, Gekelman D (2010) Two-dimensional changes and surface characteristics from an erbium laser used for root canal preparation. Lasers Surg Med 42(5):379–383

    Article  CAS  PubMed  Google Scholar 

  15. Wigdor HA, Walsh JT, Featherstone JDB, Visuri SR, Fried D, Waldvogel JL (1995) Lasers in dentistry. Lasers Surg Med 16:103–133

    Article  CAS  PubMed  Google Scholar 

  16. Mohammadi Z (2009) Lasers as aids for cleaning, shaping, and obturation of the root canal system. Dent Today 28(7):81–82, 84, 86; quiz 87, 80

    PubMed  Google Scholar 

  17. Stabholz A, Sahar-Helft S, Moshonov J (2004) Lasers in endodontics. Dent Clin North Am 48(4):809–832

    Article  PubMed  Google Scholar 

  18. Gutknecht N, Franzen R, Schippers M, Lampert F (2004) Bactericidal effect of a 980-nm diode laser in the root canal wall dentin of bovine teeth. J Clin Laser Med Surg 22(1):9–13

    Article  CAS  PubMed  Google Scholar 

  19. Gouw-Soares S, Gutknecht N, Conrads G, Lampert F, Matson E, Eduardo CP (2000) The bactericidal effect of Ho:YAG laser irradiation within contaminated root dentinal samples. J Clin Laser Med Surg 18(2):81–87

    CAS  PubMed  Google Scholar 

  20. Matsuoka E, Jayawardena JA, Matsumoto K (2005) Morphological study of the Er, Cr:YSGG laser for root canal preparation in mandibular incisors with curved root canals. Photomed Laser Surg 23(5):480–484

    Article  PubMed  Google Scholar 

  21. Eto JN, Niu W, Takeda FH, Kimura Y, Matsumoto K (1999) Morphological and atomic analytical changes of root canal wall dentin after treatment with thirty-eight percent Ag(NH3)2F solution and CO2 laser. J Clin Laser Med Surg 17(1):19–24

    CAS  PubMed  Google Scholar 

  22. Takeda FH, Harashima T, Eto JN, Kimura Y, Matsumoto K (1998) Effect of Er:YAG laser treatment on the root canal walls of human teeth: an SEM study. Endod Dent Traumatol 14(6):270–273

    Article  CAS  PubMed  Google Scholar 

  23. Ciucchi B, Khettabi M, Holz J (1989) The effectiveness of different endodontic irrigation procedures on the removal of the smear layer: a scanning electron microscope study. Int Endod J 22:334–343

    Article  Google Scholar 

  24. Bertrand MF, Pizzardini P, Muller M, Medioni E, Rocca JP (1999) The removal of smear layer using Quantec system. A study using the scanning electron microscope. Int Endod J 32(1):217–224

    Article  CAS  PubMed  Google Scholar 

  25. Vescovi P, Merigo E, Fornaini C, Rocca JP, Nammour S (2012) Thermal increase in the oral mucosa and in the jawbone during Nd:YAG laser applications. Ex vivo study. Med Oral Patol Oral Cir Bucal 17(4):e697–e704

    Article  PubMed Central  PubMed  Google Scholar 

  26. Martins GR, Cavalcanti BN, Rode SM (2006) Increases in intrapulpal temperature during polymerization of composite resin. J Prosthet Dent 96:328–331, 26

    Article  CAS  PubMed  Google Scholar 

  27. Sulieman M, Rees JS, Addy M (2006) Surface and pulp chamber temperature rises during tooth bleaching using a diode laser: a study in vitro. Br Dent J 200:631–634

    Article  CAS  PubMed  Google Scholar 

  28. Augustin G, Davila S, Mihoci K, Udiljak T, Vedrina DS, Antabak A (2008) Thermal osteonecrosis and bone drilling parameters revisited. Arch Orthop Trauma Surg 128:71–77

    Article  PubMed  Google Scholar 

  29. Raiss P, Pape G, Jäger S, Loew M, Bitsch R, Rickert M (2010) In vitro measurement of temperature changes during implantation of cemented glenoid components. Acta Orthop 81:211–215

    Article  PubMed  Google Scholar 

  30. Eriksson AR, Albrektsson T (1983) Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 50:101–107

    Article  CAS  PubMed  Google Scholar 

  31. Merigo E, Clini F, Fornaini C, Oppici A, Paties C, Zangrandi A, Fontana M, Rocca JP, Meleti M, Manfredi M, Cella L, Vescovi P (2012) Laser-assisted surgery with different wavelengths: a preliminary ex vivo study on thermal increase and histological evaluation Lasers Med Sci Apr 14

  32. Torabinejad M, Handysides R, Khademi AA, Bakland LK (2002) Clinical implications of the smear layer in endodontics: a review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94(6):658–666

    Article  PubMed  Google Scholar 

  33. White JM, Fagan MC, Goodis HE (1994) Intrapulpal temperatures during pulsed Nd:YAG laser treatment of dentin, in vitro. J Periodontol 65(3):255–259

    Article  CAS  PubMed  Google Scholar 

  34. Violich DR, Chandler NP (2010) The smear layer in endodontics—a review. Int Endod J 43(1):2–15

    Article  CAS  PubMed  Google Scholar 

  35. DiVito E, Peters OA, Olivi G (2012) Effectiveness of the erbium:YAG laser and new design radial and stripped tips in removing the smear layer after root canal instrumentation. Lasers Med Sci 27(2):273–280

    Article  CAS  PubMed  Google Scholar 

  36. Cameron J (1995) The choice of irrigant during hand instrumentation and ultrasonic irrigation of the root canal: a scanning electron microscope study. Aust Dent J 40:85–90

    Article  CAS  PubMed  Google Scholar 

  37. George R, Walsh LJ (2011) Performance assessment of novel side firing safe tips for endodontic applications. J Biomed Opt 16(4):048004

    Article  PubMed  Google Scholar 

  38. Moura-Netto C, Guglielmi Cde A, Mello-Moura AC, Palo RM, Raggio DP, Caldeira CL (2011) Nd:YAG laser irradiation effect on apical intracanal dentin—a microleakage and SEM evaluation. Braz Dent J 22(5):377–381

    PubMed  Google Scholar 

  39. Faria MI, Souza-Gabriel AE, Alfredo E, Messias DC, Silva-Sousa YT (2011) Apical microleakage and SEM analysis of dentin surface after 980 nm diode laser irradiation. Braz Dent J 22(5):382–387

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Guidotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guidotti, R., Merigo, E., Fornaini, C. et al. Er:YAG 2,940-nm laser fiber in endodontic treatment: a help in removing smear layer. Lasers Med Sci 29, 69–75 (2014). https://doi.org/10.1007/s10103-012-1217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1217-x

Keywords

Navigation