Bipolar method and its modifications
 139 Downloads
 1 Citations
Abstract
Bipolar is one of the multiple criteria decision analysis methods, proposed by KonarzewskaGubała (in Archiwum Automatyki i Telemechaniki 32(4):289–300, 1987). The main feature of the method is that alternatives are not compared directly with each other, but they are confronted to the two reference sets of objects: desirable and nonacceptable. Practical application of the method revealed its shortcomings, therefore improvements of the method were desirable. The aim of the paper is to formulate some modifications of the classical Bipolar approach and consider a case where reference sets are numerous. Unified Bipolar procedure which contains classical Bipolar method as well as the modifications described in the paper is given. Numerical illustrations of the modifications and unified approach are also presented.
Keywords
Multicriteria decision making Decision support system Ordering problems Classifying problems1 Introduction
One of the multiple criteria decision analysis (MCDA) methods is Bipolar proposed by KonarzewskaGubała (1987). The method is based on the concept of two bipolar sets of reference objects. The practical application of the method revealed its shortcomings, therefore improvements of the method were desirable. The aim of the paper is to formulate some modifications of the classical Bipolar approach, which will help to overcome the difficulties encountered. In one of the modifications we consider a case where reference sets are numerous. Unified Bipolar procedure which contains classical Bipolar method as well as all the modifications described in the paper is given.
The paper consists of nine sections. Section 2 is an overview of MCDM methods and a comparison of the main notions of the Bipolar method with those methods. In Sect. 3 a formal presentation of the classical Bipolar method, based on the description presented in Trzaskalik and Sitarz (2012) is given. The first suggestion presented in Sect. 4 refers to the modification of one of the reference sets. In the second suggestion, the set of categories used in bipolar sorting is enlarged. New propositions are illustrated by simple numerical examples. Section 5 suggests a modification of the method of comparing decision variants with the elements of the reference system and of the method of determining the position of the decision variant with respect to a bipolar reference system. Section 6 suggests a method of aiding a decision maker in the determination of criteria weights and veto threshold values. Section 7 presents a procedure to be applied in the Bipolar method which takes into account the modifications suggested in the paper. Section 8 presents a numerical example that includes the modifications of the methods introduced in Sects. 5 and 6. The concluding remarks, which include references to applications of Bipolar methodology and directions of further research, end the paper. Early versions of the paper can be found in Trzaskalik and Sitarz (2012) and Trzaskalik et al. (2013).
2 The Bipolar approach as compared with other MCDA methods
2.1 Overview of MCDA methods

Select the alternative which best corresponds to his/her preferences (the problem of selection);

Order the alternatives from the best to the worst (the problem of ordering);

Assign each alternative to one of predefined classes (the problem of multicriteria classification).
Among multicriteria problems one can distinguish deterministic, stochastic, and fuzzy problems. In deterministic problems, the evaluations of alternatives with respect to criteria are numbers. The set of all evaluations forms the decision table. In stochastic problems, the evaluation of each alternative with respect to the criteria is a discrete random variable with a known probability distribution. To compare decision variants, selection rules based on stochastic dominations are most often used. In fuzzy problems, the evaluations of alternatives are fuzzy numbers (usually triangular fuzzy numbers). The problems are usually solved in two stages. In the first stage the decision variants are compared using certain criteria. In the second stage, a synthesis of the results is performed, in various ways (Trzaskalik 2014).
Among the oldest multicriteria methods are additive methods, such as the SAW method (Simple Additive Weighting Method) (Churchman and Ackoff 1954). The decision maker’s preferences are modeled using an additive linear function. An extension of this method is the FSAW method (Fuzzy Simple Additive Weighing Method) (Tzeng and Huang 2011), in which triangular fuzzy numbers are used, and their parameters can be obtained through a dialogue with an expert. In both the SMART method (Simple MultiAttribute Ranking Technique) (Edwards 1971), and in the SMARTER method (Simple MultiAttribute Ranking Technique Exploiting Ranks) (Edwards and Barron 1994) the weights of criteria are obtained by comparing the changes of states from the least desired to the most desired with respect to one criterion, with those with respect to another criterion. The final evaluation is interpreted as the global utility of the given variant.
Analytical hierarchization and related methods are commonly used, in particular the AHP method (Analytical Hierarchy Process) (Saaty 1980). This method allows to form a scale vector whose components permit to order decision variants and to select the best one. The vector is formed using verbal pairwise comparisons of the criteria and of the decision variants with respect to the criteria. Fuzzy versions of this method also exist, such as FAHP (Fuzzy Analytic Hierarchy Process) (Mikhailov and Tzvetinov 2004).
In the REMBRANDT method (Ratio Estimation in Magnitudes or deciBells to Rate Alternatives which are NonDominaTed) method (Lootsma 1992), the Saaty scale is replaced by the logarithmic scale, and the PerronFrobenius eigenvalue method, by the logarithmic least squares method. This method constitutes a reply to the criticism of AHP, concerning the evaluation scale used, the method of obtaining a synthetic evaluation of the variants, and the possible changes in the ranking when a new variant is added. In the ANP method (Analytic Network Process) (Saaty 1996), the assumption of the preferential independence of criteria—used in other methods—is abandoned, which allows to take into account relationships among the criteria and between the criteria and the alternatives. An example of the fuzzy variant of this method is FANP (Fuzzy Analytic Network Process) (Tzeng and Huang 2011). In the MACBETH method (Measuring Attractiveness by a Categorical Based Evaluation TecHnique) (Bana e Costa and Vansnick 1993), the relative attractiveness of the elements compared (ordinal evaluation) is determined, and then—when the given elements are not regarded as equally attractive—a qualitative evaluation of the difference between the more attractive and the less attractive elements is expressed using a set of six semantic categories.
Verbal Decision Analysis (VDA) is used to analyze unstructured problems, with mostly qualitative parameters, for which there is no objective model of aggregation. It uses verbal evaluations to which no quantitative operations can be applied. The ZAPROS method (Russian: ЗAмкнyтыe ПPoцeдypы y Oпopныx Cитyaций, Closed Procedures at Reference Situations) (Larichev and Moskovich 1995) and its modification, ZAPROS III, use verbal ordinal scales. In the method proposed by Larichev (2001), the Joint Ordinal Scale is created on the basis of the decision maker’s preferences and a partial ordering on the set of decision variants is formed.
Methods from the ELECTRE family (fr. ELimination Et Choix Traduisant la REalia), developed by B. Roy and his collaborators, play an important role in the development of multicriteria methods. Roy suggests to extend the set of basic preference situations so as to include the situations of equivalence, weak preference, strong preference, and incomparability. Moreover, he defines grouped relations, which—together with the application of equivalence and preference thresholds, as well as of the principle of limited compensation—allows to define a fuzzy relation called the outranking relation. An entire family of methods, which includes ELECTRE I, ELECTRE Iv, ELECTRE Is, ELECTRE III, ELECTRE TRI, ELECTRE IV (Roy and Bouyssou 1993), had been created using these assumptions. An approach combining ELECTRE with stochastic dominations can be found in the papers (Zaras and Martel 1994; Nowak 2005).
The methods from the PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations) group take into account the differences between the evaluations of alternatives for all criteria. The greater the difference between the evaluations, the stronger (with respect to the given criterion) the preference for one of the alternatives. Each criterion has a preference function assigned, with values from the interval [0, 1], measuring the strength of the preference. A characteristic feature here is the use of preference flows. Among basic methods in this group are: PROMETHEE I (Brans 1982), which allows to partially order the alternatives, and PROMETHEE II, which allows to order them completely. A method proposed in the paper (Górecka and Muszyńska 2011) combines elements of ELECTRE and PROMETHEE II, with veto thresholds added. Another modification is the EXPROM method (EXtension of the PROMethee method) (Diakoulaki and Koumoutsos 1991), which uses the ideal and antiideal variants. Adding veto thresholds to EXPROM has been suggested in the paper (Górecka and Szalucka 2013). A stochastic variant of PROMETHEE II with veto thresholds and stochastic dominations has been proposed in the paper (Nowak 2005). An extension of the EXPROM II method, on the other hand, with veto thresholds and stochastic dominations, can be found in the papers (Górecka 2010a, b).
Using an interactive approach, we assume that the decision maker is able to supply local information, that is, to evaluate an individual alternative or a small subset of alternatives. Each iteration consists of two stages: dialogue with the decision maker and calculations. In the dialogue stage the decision maker is asked to express his/her preferences by formulating an opinion about the values of the parameters which describe the consequences of the selection of the proposed decision variants. The decision makers reveals his/her preferences by evaluating the proposed solution and indicating how it can be improved. The process is continued until a solution satisfactory for the decision maker is found. Interactive stochastic methods include: STEPDPR (STEP Method for Discrete Decision Making Problems under Risk) (Nowak 2008), INSDECM (INteractive Stochastic DECision Making Procedure) (Nowak 2006), ATODPR (Analysis of TradeOffs for Discrete Decision Making Problems under Risk) (Nowak 2010).
A very popular approach, which is the focus of our attention in this paper, is an approach using reference points. One of the best known methods of this kind is the TOPSIS method (Technique for Order Preference by Similarity to Ideal Solution) (Hwang and Yoon 1981), in which the alternatives considered are compared with abstract weighed reference solutions: ideal and antiideal. It has a fuzzy counterpart, namely FTOPSIS (Fuzzy Technique for Order Preference by Similarity to Ideal Solution) (Jahanshahloo et al. 2006). The values of the criteria characterizing the alternatives are given as triangular fuzzy numbers. The VIKOR method (Serbian: VIseKriterijumska Optimizacija I Kompromisno Resenje, Multicriteria Optimization and Compromise Solution) (Opricovic 1998) is very often used, thanks to the paper (Opricovic and Tzeng 2004), whose authors compare it to TOPSIS. The ideal and antiideal variants are the reference points. Combining the three methods: DEMATEL, ANP i VIKOR (Tzeng and Huang 2011) allows to consider decision problems with interdependent criteria and variants. The first one, DEMATEL (DEcision Making Trial and Evaluation Laboratory) (Gabus and Fontela 1973), explains the interdependencies among the model’s elements without the need to perform tedious pairwise comparisons. To obtain the limit supermatrix, the ANP method is used, while the final ordering is obtained using the VIKOR method.
2.2 The Bipolar method
Let us focus on Bipolar method (KonarzewskaGubała 1987, 1989). To accept the notion of bipolar reference system, applied in the method, it is worth while to follow the evolution of the notion of the ideal solution, which can be traced in a large variety of papers in different fields: goal programming, compromise programming, multidimensional statistical analysis or game theory. The author of the method claims that due to the large number of ideals, as well as to the fuzziness and imprecision of their definitions, the ideal “point” is not perceived as a point but, rather, as a set (“cloud”). The question arises: do humans try to reach success (“ideal”) with the same intensity as they want to avoid failure (“antiideal”). It follows from the descriptive models that the motivation to reach success and the motivation to avoid failure are not entirely symmetrical. Therefore, the final evaluation of an alternative is based on its independent “position” with regard to both subsets called “ideal” and “antiideal” (KonarzewskaGubała 1987, 1989).
The main feature of the analysis in the Bipolar method is that the decision alternatives are not compared directly with each other, but by means of two sets of reference objects: desirable (“good”) and nonacceptable (“bad”). These two disjoint sets form the bipolar reference system. It is assumed that the decision maker applying the Bipolar method in practice, on the basis of her/his experience, opinions gathered and studies undertaken, is able to create such a system.
In the first phase of the Bipolar method alternatives are compared to reference objects and, as a result, outranking indicators and preference structure in the reference system are established. In this phase the notions of concordance and veto thresholds, introduced in Electre methodology (Roy 1985) can be recognized. In the second phase of the method the position of each alternative with respect to the bipolar reference system is established. This phase is influenced by algorithms of confrontation (Merighi 1980). Finally, in the third phase a bipolar partial preordering is obtained, as the intersection of two monosortings of alternatives into specified categories and two partial preorderings (monoorders) introduced independently in the set of alternatives.
The Bipolar method has been applied in modeling of multistage multicriteria decision processes (Trzaskalik 1987). Modifications of this approach also exist (Górecka 2009). The changes, as compared with the original BIPOLAR method, consist in using, in the first stage of the procedure, the distributions of the evaluations of variants with respect to each criterion and in the application of SD (Stochastic Dominance) rules, as well as in the application of the notion of a pseudocriterion and the determination of the position of the variants investigated with respect to the bipolar reference system. (Here, the idea behind the PROMETHEE II method can be recognized.) BIPOLAR MIX (Górecka 2017a, b) is another methodological proposal, which allows to use data in various forms.
The Bipolar method belongs to a group of methods that involve reference objects for comparison of alternatives. We can also mention to other bireference methods described in the papers Michałowski and Szapiro (1992) and Skulimowski (1996). Decision support system reference sets and the rough sets methodology is described in (Greco et al. 2002). More recently the paper Chen (2011) develops optimistic and pessimistic estimations with several fuzzy point operators. A new notion of a bipolar query against collections of textual documents is introduced in Zadrożny et al. (2012). The paper BouzarourAmokrane et al. (2015) addresses collaborative group decision making problems using a consensus process to achieve a joint legitimate solution. The proposed resolution model is based on individual bipolar assessments. The model proposed in Shen and Tzeng (2016) provides a bipolar approach to guide businesses towards systematic improvements. In Wang et al. (2018) MCDM methods are investigated in a bipolar neutrosophic environment. Bipolar 2tuple linguistic aggregation operators are developed in Lu et al. (2017) for aggregation operations. The paper Liu et al. (2018) aims to develop a dynamic linguistic multicriteria decision making model dealing with bipolar linguistic scales in which both alternatives and criteria may vary across time.
there does not exist a “good” reference object and a “bad” reference object such that the “good” reference object is dominated (in the sense of the classical domination relation) by the “bad” reference object.
holds, then such a situation (which at first seems unreasonable) cannot occur.
each “good” reference object dominates each “bad” reference object.
is satisfied.
Assumption 1 is overrestrictive, therefore it is often impossible for decision makers to apply the approach in reallife decision problems. It seems that it is necessary to include new concepts in the Bipolar methodology. Hence, the present paper formulates modifications of the classical Bipolar approach. The selection of one or several of the presented possibilities should be performed together with a decision maker willing to apply the Bipolar approach. The present paper will also consider a case where reference sets are large (as it may happen when they are created from historical data) and suggest changes to the original version of the Bipolar method.
3 The classical Bipolar method
In this section a formal presentation of the classical Bipolar method is given. Such a new description [prepared by the authors of the paper and first presented in Trzaskalik and Sitarz (2012)] seems necessary for the presentation of modifications to the Bipolar method, presented in the next sections of the paper.
It is assumed, that there are given: the set of decision alternatives A = {a^{1}, a^{2},…, a^{m}} and the set of criteria functions F = {f_{1},…,f_{n}}, where f_{k}: A→ K_{k} for k = 1, …, n, and K_{k} is a cardinal, ordinal or binary scale. Criteria are defined in such a way that higher values are preferred to lower values.^{1} For each criterion the decision maker establishes weight w_{k} of relative importance (it is assumed, that \( \sum\nolimits_{k = 1}^{n} {w_{k} } = 1 \) and w_{k}≥ 0 for each k = 1, …, n), equivalence threshold q_{k} and veto threshold v_{k}. The decision maker also establishes minimal criteria values concordance level s as the outranking threshold. It is assumed, that condition 0.5 ≤ s ≤ 1 holds.
The decision maker establishes a bipolar reference system R = G ∪ B, which consists of the set of “good” objects G = {g^{1}, …, g^{g}}and the set of “bad” objects B = {b^{1}, …, b^{b}}, where g and b denote the number of “good” and “bad” objects, respectively. It is assumed, that G ∩ B = ∅. The number of elements of the set R is equal to g + b. Elements of the set R are denoted as r^{h}, h = 1, …, g + b. Values f_{k}(r^{h}) for k = 1, …, n and h = 1, …, r are known.
3.1 Comparison of alternatives to reference objects
3.1.1 Outranking indicators
The value \( c^{ + } \left( {{\mathbf{a}}^{i} ,\,{\mathbf{r}}^{j} } \right) \) is the sum of the criteria weights for which a^{i} is preferred to r^{j} with equivalence threshold q_{k}; the value \( c^{  } \left( {{\mathbf{a}}^{i} ,\,{\mathbf{r}}^{j} } \right) \) is the sum of the criteria weights for which r^{j} is preferred to a^{i} with equivalence threshold q_{k}; and the value \( c^{ = } \left( {{\mathbf{a}}^{i} ,\,{\mathbf{r}}^{j} } \right) \) is the sum of the criteria weights for which a^{i} is equal to r^{j} with equivalence threshold q_{k}.
The set \( I^{ + } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) \) consists of those criteria indices for which a^{i} is preferred to r^{j}, while the set \( I^{  } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) \) consists of those criteria indices for which r^{j} is preferred to a^{i}.
For \( k \in I^{  } \), the veto test is positively verified if r^{j} is preferred to a^{i} and the value of the criteria function is greater than the given threshold ν_{k}.
 If for the pair (a^{i}, r^{j}) veto test is positively verified, then outranking indicators are defined as follows:$$ d^{ + } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) = c^{ + } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) + c^{ = } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right),\quad d^{  } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) = 0 $$
 If for the pair (a^{i}, r^{j}) veto test is not positively verified, then outranking indicators are defined as follows:$$ d^{ + } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) = 0,\quad d^{  } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) = 0 $$
 If for the pair (a^{i}, r^{j}) veto test is positively verified, then outranking indicators are defined as follows:$$ d^{ + } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) = 0,\quad d^{  } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) = c^{  } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) + c^{ = } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) $$
 If for the pair (a^{i}, r^{j}) veto test is not positively verified, then outranking indicators are defined as follows:$$ d^{ + } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) = 0\quad d^{  } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) = 0 $$
 If for the pair (a^{i}, r^{j}) two nondiscordance tests are positively verified, then outranking indicators are defined as follows:$$ d^{ + } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) = c^{ + } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) + c^{ = } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right)\quad d^{  } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) = c^{  } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) + c^{ = } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) $$
 For the pair (a^{i}, r^{j}) at least one of nondiscordance tests is not positively verified, then outranking indicators are defined as follows:$$ d^{ + } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) = 0,\quad d^{  } \left( {{\mathbf{a}}^{i} ,{\mathbf{r}}^{j} } \right) = 0. $$
The outranking indicators defined above are measures of being better (d^{+}) or being worse (d^{−}), with equivalence threshold q_{k} and veto threshold ν_{k}. Moreover, they satisfy the following conditions: d^{+}(a^{i}, r^{j}) ∈ [0, 1] and d^{−}(a^{i}, r^{j}) ∈ [0, 1].
3.1.2 Preference structure

Large preference (a^{i} L_{s}r^{h}) means that a^{i} is preferred to r^{h} with outranking threshold s ∈ [0.5, 1]. We interpret large preference (r^{j} L_{s}a^{i}) analogically.

Indifference a^{i} I_{s}r^{h} means that a^{i} is indifferent to r^{h} with outranking threshold s. This can only hold if c^{+}(a^{i}, r^{j}) = c^{−}(a^{i}, r^{j}) and two nondiscordance tests are positively verified.

Incomparability a^{i} R_{s}r^{j} means that a^{i} and r^{h} are incomparable.
3.2 Position of an alternative in relation to the bipolar reference system
3.2.1 Success achievement degree
In the set L_{s}(a^{i}, G) there are included these indices of “good” objects, for whom the statement a^{i} L_{s}g^{h} is true. The two remaining sets are defined similarly.
Defining the position of an alternative a^{i} in relation to the set G we consider three possibilities:
Case S1 L_{s}(a^{i}, G) ∪ I_{s} (a^{i}, G) ≠ ∅.
Case S2 L_{s}(a^{i}, G) ∪ I_{s}(a^{i}, G) = ∅ ^ L_{s}(G, a^{i}) ≠ ∅.
Case S3 If conditions described in Cases S1 and S2 are not fulfilled, then the success achievement degree d_{S}(a^{i}) is defined to be equal to 0.
3.2.2 Failure avoidance degree
In the set L_{s}(B, a^{i}) there are included these numbers of “bad” objects, for whom the statement b^{h}L_{s}a^{i} is true. The two remaining sets are interpreted similarly.
Defining the position of an alternative a^{i} in relation to the set B we consider three possibilities:
Case F1 L_{s}(B, a^{i}) ∪ I_{s}(B, a^{i}) = ∅ ^ L_{s}(a^{i}, B) ≠ ∅.
Case F2 L_{s}(B, a^{i}) ∪ I_{s}(B, a^{i}) ≠ ∅.
Case F3 If conditions described in Cases S1 and S2 are not fulfilled, then the failure avoidance degree d_{F}(a^{i}) is defined to be equal to 0.
3.3 Relationships in the set of alternatives
3.3.1 Monosortings and monorankings
According to the success achievement degree the alternatives from the set A are sorted to the three categories:
Category S1 consists of the “overgood” alternatives, for which condition, formulated in Case S1 is fulfilled.
Category S2 consists of the alternatives, for which condition, formulated in Case S2 is fulfilled.
Category S3 consists of the alternatives, for which condition, formulated in Case S3 is fulfilled (decision variants noncomparable with G).
According to the failure avoidance degree the alternatives from the set A are sorted to the three categories:
Category F1 consists of the alternatives, for which condition, formulated in Case F1 is fulfilled.
Category F2 consists of “underbad” alternatives, for which condition, formulated in Case F2 is fulfilled.
Category F3 consists of the alternatives, for which condition, formulated in Case F3 is fulfilled (alternatives noncomparable with B).
3.3.2 Bipolarsorting and Bipolarranking
Considering jointly evaluation of success achievement degree and failure avoidance degree, three categories of alternatives are defined:
Category B1 consists of such alternatives a^{i}, that d _{ G} ^{+} (a^{i}) > 0 ∧ d _{ B} ^{+} (a^{i}) > 0.
Category B2 consists of such alternatives a^{i}, that d _{ G} ^{−} (a^{i}) > 0 ∧ d _{ B} ^{+} (a^{i}) > 0.
Category B3 consists of such alternatives a^{i}, that d _{ G} ^{−} (a^{i}) > 0 ∧ d _{ B} ^{−} (a^{i}) > 0.
 For a^{i}, a^{j} ∈ B1

a^{i} is preferred to a^{j}, iff d_{S}(a^{i}) + d_{F}(a^{i})> d_{S}(a^{j}) + d_{F}(a^{j})

a^{i} equivalent to a^{j}, iff d_{S}(a^{i}) + d_{F}(a^{i})= d_{S}(a^{j}) + d_{F}(a^{j})

 For a^{i}, a^{j} ∈ B2

a^{i} is preferred to a^{j}, iff 1 − d_{S}(a^{i}) + d_{F}(a^{i})>1 − d_{S}(a^{j}) + d_{F}(a^{j})

a^{i} is equivalent to a^{j}, iff 1 − d_{S}(a^{i}) + d_{F}(a^{i}) =1 − d_{S}(a^{j}) +d_{F}(a^{j})

 For a^{i}, a^{j} ∈ B3

a^{i} is preferred to a^{j}, iff d_{S}(a^{i})+ d_{F}(a^{i})< d_{S}(a^{j})+ d_{F}(a^{j})

a^{i} is equivalent to a^{j}, iff d_{S}(a^{i})+ d_{F}(a^{i})= d_{S}(a^{j}) + d_{F}(a^{j})

4 Modifications of reference sets and categories
Example 1
Let us notice that alternative a^{1} is not included, because for a^{1} we have \( d_{{\mathbf{G}}}^{ + } \left( {{\mathbf{a}}^{1} } \right) \) > 0 and \( d_{{\mathbf{B}}}^{  } \left( {{\mathbf{a}}^{1} } \right) \) > 0. It means that a^{1} is “overgood” and “underbad” simultaneously. To exclude such situations we propose below suitable modifications.
4.1 Modification of the reference system
We check if condition (1) is fulfilled. If it is not, we modify the reference set of “good” objects or reference set of “bad” objects (Trzaskalik and Sitarz 2012).
4.1.1 Modification of the reference set of “good” objects
Let us notice, that if f(g) dominates all “bad” objects, then f(\( \overline{{\mathbf{g}}} \)) = f(g). In the opposite case we increase the appropriate components of vector f(g).
Example 1a
4.1.2 Modification of the reference set of “bad” objects
Let us notice, that if f(b) is dominated by all “bad” objects, then f(\( \overline{{\mathbf{b}}} \)) = f(b). In the opposite case we decrease the appropriate components of vector f(b).
Example 1b
4.2 Modification of categories in bipolar ranking
Example 1c
In this example we consider data presented in Example 1 with category B2’. In this situation category B2’ consists of one alternative—a^{1}.
4.3 Numerical results
5 Modifications for numerous reference sets
Let us assume that reference sets are numerous and values of all the criteria are given on number scales. In the first proposed modification it is assumed that the weight of considered criterion depends on the values of the “bad” reference objects. Functions of local preference will describe that kind of dependence. The second modification refers to position description for alternatives in relation to the reference system.
5.1 Local preference function
The value of function η_{k} is equal to w_{k}, if the value of the criterion number k for the considered alternative a^{i} is greater or equal to the highest value of that criterion on the reference set B. On the other hand, the value of that function is equal to 0, if the value of the criterion number k for the considered decision variant a^{i} is smaller than the lowest value of the criterion number k on the reference set B. It means, that if the value of the kth criterion for the considered decision variant is lower than the best value of that criterion for some (or all) objects from the set B, the value of the local preference function weakens the weight of that criterion, given by the decision maker.
5.2 Modification of position definition for an alternative in relation to the reference system
We assume that the considered alternative outranks a reference set, if the number of objects outranked by that variant is greater than the number of objects from that set which outranked the considered alternative. Otherwise we assume that the reference set outranks the considered decision variant. As a measure of outranking we consider the ratio of the difference between these values to the number of elements of the reference set.
6 Determining criteria weights and veto thresholds
Let us assume again that reference sets are numerous and values of all the criteria are given on number scales.
6.1 Criteria weights
6.2 Veto thresholds
Value of q (the same for all the considered criteria) is arbitrarily determined by the decision maker. Defining the number of deciles in the set f(G) the decision maker determines such a value of considered criterion, which is better than the value of that criterion for q × 10% objects in that set.
7 Modified Bipolar procedure
 Start
 1.
Establish sets A, G, B.
 2.
Is condition (1) fulfilled? Yes—go to 10. No—go to 3.
 3.
Do you want to modify reference sets? Yes—go to 4. No—go to 6.
 4.
Do you want to modify the set G? Yes—go to 7. No—go to 5.
 5.
Do you want to modify set B? Yes—go to 8. No—go to 10.
 6.
Do you want to extend the set of Bipolar categories? Yes—go to 9. No—go to 10.
 7.
Modify the set G according to 3.1.1. Go to 10.
 8.
Modify the set B according to 3.1.2. Go to 10.
 9.
Extend the set of categories in Bipolar ranking according to 3.2. Go to 10.
 10.
Do you want to apply the possibility of decision support for establishing weights? Yes—go to 12. No—go to 11.
 11.
Establish weights, k = 1, …, n and concordance level s. Go to 13.
 12.
Establish weights according to 5.1 and concordance level s. Go to 13.
 13.
Do you want to apply possibility of decision support for establishing veto thresholds? Yes—go to 15. No—go to 14.
 14.
Establish veto thresholds. Go to 16.
 15.
Establish veto thresholds according to 5.2. Go to 16.
 16.
Do you want to apply local preference functions to determine outranking coefficients? Yes—go to 17. No—go to 18.
 17.
Determine outranking coefficients according to 4.1. Go to 20.
 18.
Determine outranking coefficients according to 2.1.1. Go to 20.
 19.
Determine preference structure according to 2.1.2. Go to 20.
 20.
Do you want to apply modification of position definition for a^{i} in relation to R? Yes—go to 22. No—go to 21.
 21.
Determine the position a^{i} in relation to R according to 2.2. Go to 23.
 22.
Determine the position a^{i} in relation to R according to 4.2. Go to 23.
 23.
Perform monosortings and monorankings according to 2.3.1. Go to 24.
 24.
Perform Bipolarsorting and Bipolarranking according to 2.3.2. Go to Stop.
 1.

Stop
8 Illustrative numerical examples
Values of criteria for reference objects and alternatives
G  f _{1}  f _{2}  f _{2}  B  f _{1}  f _{2}  f _{2}  A  f _{1}  f _{2}  f _{2} 

g ^{1}  15  110  9  b ^{1}  7  31  1  a ^{1}  25  115  6 
g ^{2}  14  56  4  b ^{2}  2  65  3  a ^{2}  18  80  8 
g ^{3}  18  90  6  b ^{3}  4  95  4  a ^{3}  19  35  9 
g ^{4}  19  120  7  b ^{4}  3  5  5  a ^{4}  10  65  5 
g ^{5}  15  30  8  b ^{5}  12  3  5  a ^{5}  14  13  8 
g ^{6}  11  18  8  b ^{6}  2  14  3  a ^{6}  15  17  13 
g ^{7}  12  15  6  b ^{7}  7  28  2  a ^{7}  21  13  8 
g ^{8}  13  15  5  b ^{8}  2  32  6  a ^{8}  14  25  9 
g ^{9}  20  25  9  b ^{9}  5  70  4  a ^{9}  8  35  1 
g ^{10}  13  95  7  b ^{10}  3  40  3  a ^{10}  5  15  3 
g ^{11}  19  65  6  b ^{11}  10  50  2  
g ^{12}  9  150  5  b ^{12}  11  49  1  
g ^{13}  23  58  5  b ^{13}  7  85  0  
g ^{14}  15  74  4  b ^{14}  2  125  5  
g ^{15}  12  80  6  b ^{15}  4  55  4  
g ^{16}  12  70  4  b ^{16}  3  45  1  
g ^{17}  20  35  5  b ^{17}  12  15  3  
g ^{18}  13  50  3  b ^{18}  5  25  4  
g ^{19}  15  45  3  b ^{19}  11  35  6  
g ^{20}  11  78  8  b ^{20}  15  53  2 
In the first of considered examples (Example 2) we will apply modifications, described in Chapters 4 and 5, whereas in the second one (Example 2a) for the same set of data we will perform calculations according the classical version of the method.
Example 2
 Start
 1.
We establish sets A, G, B (Table 2).
 2.
 3.
We do not want to modify reference sets and go to 6.
 6.
We do not want to extend set of Bipolar categories and go 10.
 10.
We will apply possibility of decision support for establishing the weights.
Subsequent deciles in the sets B and G are given in Table 3. Determining deciles we apply linear interpolation. We go to 12.Table 3Deciles distributions in the sets G and B
Deciles in set B
Deciles in the set G
ξ _{ q,1} ^{ B}
ξ _{ q,2} ^{ B}
ξ _{ q,3} ^{ B}
ξ _{ q,1} ^{ G}
ξ _{ q,2} ^{ G}
ξ _{ q,3} ^{ G}
0
2
3
0
9
15
3
1
2
13.1
1
11
17.7
3.9
2
2.8
23
1.8
12
29
4
3
3
30.1
2
12.7
42
5
4
4
33.8
3
13
53.6
5
5
5
42.5
3
14.5
61.5
6
6
7
49.4
4
15
71.6
6
7
7.9
53.6
4
15.9
78.6
7
8
11
66
5
19
91
8
9
12
86
5.1
20
111
8.1
10
15
125
6
23
150
9
 12.
We apply decision support in establishing weights and calculate coefficients μ_{1} = 99, μ_{2} = 74, μ_{1} = 92, weights: w_{1} = 0.374, w_{2} = 0.279, w_{3} = 0.347, and coefficient ω = 0.883. It is seen, that the obtained value of ω confirms, that reference sets B and G has been established properly. We establish s = 0.5 and go to 13.
 13.
We do not want to apply decision support for establishing veto thresholds and go to 14.
 14.
We establish veto thresholds v_{1} = 1, v_{2} = 1, v_{3} = 1 and go to 16.
 16.
We want to apply the local preference function and go to 17.
 17.We determine outranking coefficients according to 4.1. Auxiliary values are shown in Table 4. We go to 20.Table 4
Auxiliary calculations
ξ_{1}
ξ_{2}
ξ_{3}
η _{1}
η _{2}
η _{3}
a ^{1}
10
10
10
1
1
1
a ^{2}
10
9
10
1
0.9
1
a ^{3}
10
5
10
1
0.5
1
a ^{4}
8
8
9
0.8
0.8
0.9
a ^{5}
10
1
10
1
0.1
1
a ^{6}
10
2
10
1
0.2
1
a ^{7}
10
1
10
1
0.1
1
a ^{8}
10
3
10
1
0.3
1
a ^{9}
8
5
2
0.8
0.5
0.2
a ^{10}
6
2
6
0.6
0.2
0.6
 20.
We want to apply modification of position definition for a^{i} in relation to R and go to 22.
 21.
We determine the position a^{i} in relation to R according to 4.2. and go to 23.
 23.We perform monosortings and monorankings according to 2.3.1. Results are given in Table 5. We go to 24.
 24.
We perform Bipolarsorting and Bipolarranking according to 2.3.2. Results are given in Table 5. Go to Stop.
 1.

Stop
Example 2a

Start
We perform steps 1, 2, 3, 6, 10, 12, 13, 14 in the same way, as in Example 2 16.
We do not want to apply the local preference function and go to 18.
 18.
We determine outranking coefficients according to 2.1.1 and go to 20.
 20.
We do not want to apply modification of position definition for a^{i} in relation to R and go to 21.
 21.
We determine the position a^{i} in relation to R according to 2.2 and go to 23.
 23.
We perform monosortings and monorankings according to 2.3.1. Results are given in Table 5. We go to 24.
 24.
We perform Bipolarsorting and Bipolarranking according to 2.3.2. Results are given in Table 5. We go to Stop.
 16.

Stop
Comparing results obtained in Examples 2a and 2 it is seen that four alternatives: a^{4}, a^{5}, a^{6} and a^{8} are simultaneously “overgood” and “underbad”. Applying proposed modifications they become comparable with the rest of the alternatives and are classified in the class B2. It is worth to notice reverse of classification in monosortings (column 1 and 3—for alternatives a^{4}, a^{5}, a^{6}, a^{7}, a^{8}) and bipolar sorting (column 5 for alternative a^{7}).
9 Concluding remarks
The present paper presents some modifications of the Bipolar method which are optional and complement the classical version of the procedure. They can be treated as a decision support tool when formula (1) is not satisfied.
Inconsistency of preference can be removed by the application of modifications described in Sect. 4.1.1 for “good” objects and in Sect. 4.1.2 for “bad” objects. When discussing modifications of categories in bipolar ranking it should be noted that despite of the supposition that no alternative can be both “overgood” and “underbad”, such situations occur in practical applications. It may be difficult (or impossible) to modify the reference sets, hence—if the decision maker does not want to disregard such an alternative—we propose an (optional) procedure of ranking alternatives, presented in Sect. 4.2.
Examples 1a, 1b and 1c illustrate the possibility of a rational solution of the problem of bipolar incomparability of one alternative that is observed when the classical version of the Bipolar method is applied. On the other hand, a comparison of the results obtained when analyzing Examples 2 and 2a shows that the modifications suggested in Sects. 5 and 6 allow for a rational solution of the problem of bipolar incomparability of some alternatives and also for working out a ranking.
In the present paper the criteria were measured on a number scale. It is a limitation which we want to overcome in further research. We will consider criteria measured on an ordinal or binary scale. Another direction of research is to consider the possibility of applying an interactive approach both for the creation of reference sets and during the procedure itself.
The Bipolar method has been already applied to solve some reallife problems: for instance, to create a job characteristics of a “good” physics teacher (Jakubowicz 1987; Jakubowicz and KonarzewskaGubała 1989), to support an effective performance appraisal system (KonarzewskaGubała 1996), in multicriteria decision support for portfolio selection using the idea of reference solutions (Dominiak 1997; Trzaskalik 2014). Multiple Criteria company benchmarking (KonarzewskaGubała 2002). Modifications of Bipolar methodology proposed by D. Górecka were used for the evaluation and ranking of the European projects (Górecka 2009, 2010a, b, 2011, 2012, 2014, 2017a, b). The development of applications is the next direction of further research.
Footnotes
Notes
References
 Bana e Costa CA, Vansnick JC (1993) Sur la quantification des jugements de valeur: L’approche MACBETH, Cahiers du LAMSADE, vol 117. Université ParisDauphine, ParisGoogle Scholar
 BouzarourAmokrane Y, Tchangani A, Peres F (2015) A bipolar consensus approach for group decision making problems. Expert Syst Appl 42(3):1759–1772CrossRefGoogle Scholar
 Brans JP (1982) L’ingenierie de la decision; Elaboration d’instruments d’aide a la decision. La methode PROMETHEE. In: Nadeau R, Landry M (eds) L’aide a la decision: Nature, Instruments et Perspectives d’Avenir. Presses de l’Universite Laval, QuebecGoogle Scholar
 Chen TY (2011) A multimeasure approach to optimism and pessimism in multiple criteria decision analysis based on Atanassov fuzzy sets. Expert Syst Appl 38(10):12569–12584CrossRefGoogle Scholar
 Churchman CW, Ackoff RL (1954) An approximate measure of value. J Oper Res Soc Am 2(1):172–187Google Scholar
 Diakoulaki D, Koumoutsos N (1991) Cardinal ranking of alternative actions: extension of the PROMETHEE method. Eur J Oper Res 53:337–347CrossRefGoogle Scholar
 Dominiak C (1996) Multicriteria decision aid for portfolio selection. Ph.D. thesis. The University of Economics in Katowice (in Polish) Google Scholar
 Dominiak C (1997) Portfolio selection using the idea of reference solution. In: Fandel G, Gal T (eds) Multiple criteria decision making. Springer, Berlin, pp 593–602CrossRefGoogle Scholar
 Edwards W (1971) Social utilities. In: Engineering economist, summer symposium series 1971, vol 6Google Scholar
 Edwards W, Barron FH (1994) SMARTS and SMARTER: improved simple methods for multiattribute measurement. Organ Behav Hum Decis Process 60:306–325CrossRefGoogle Scholar
 Figueira J, Greco S, Ehrgott M (eds) (2005) Multiple criteria decision analysis: states of the art surveys. Springer, BerlinGoogle Scholar
 Gabus A, Fontela E (1973) Perceptions of the world problematic: communication procedure, communicating with those bearing collective responsibility. DEMATEL 1, Battelle Geneva Research Centre, GenevaGoogle Scholar
 Górecka D (2009) Wielokryterialne wspomaganie wyboru projektów europejskich. TNOiK Dom Organizatora, Toruń, pp 223–230 (in Polish) Google Scholar
 Górecka D (2010a) Wykorzystanie metod wielokryterialnych w procesie oceny i wyboru wniosków o dofinansowanie realizacji projektu z funduszy Unii Europejskiej. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu 108:76–91 (in Polish) Google Scholar
 Górecka D (2010b) Zastosowanie metod wielokryterialnych opartych na relacji przewyższania do oceny europejskich projektów inwestycyjnych. In: Nowak M (ed) Metody i zastosowania badań operacyjnych’10. Wydawnictwo Uniwersytetu Ekonomicznego w Katowicach, Katowice, pp 100–125 (in Polish) Google Scholar
 Górecka D (2011) On the choice of method in multicriteria decision aiding process concerning European projects. In: Trzaskalik T, Wachowicz T (eds) Multiple criteria decision making ’10–11. Publisher of The University of Economics in Katowice, Katowice, pp 81–103Google Scholar
 Górecka D (2012) Sensitivity and robustness analysis of solutions obtained in the European projects’ ranking process. In: Trzaskalik T, Wachowicz T (eds) Multiple criteria decision making ’12. Publisher of the University of Economics in Katowice, Katowice, pp 86–111Google Scholar
 Górecka D (2014) Metoda BIPOLAR z dominacjami stochastycznymi. In: Trzaskalik T (ed) Wielokryterialne wspomaganie decyzji. Metody i zastosowania, PWE, Warszawa, pp 149–152 (in Polish) Google Scholar
 Górecka D (2017a) Using BIPOLAR MIX in the process of selecting projects applying for cofinancing from the European Union. In: Stirn LZ, Borštnar MK, Žerovnik J, Drobne S (eds) SOR’ 17 proceedings: the 14th international symposium on operational research in Slovenia, Bled, September 27–29, 2017, Slovenian Society Informatika—Section for Operational Research, Ljubljana 2017, pp 174–179Google Scholar
 Górecka D (2017b) BIPOLAR MIX—a method for mixed evaluations and its application to the ranking of European projects. Mult Criteria Decis Mak 12:36–48CrossRefGoogle Scholar
 Górecka D, Muszyńska J (2011) Analiza przestrzenna innowacyjności polskich regionów. Acta Universitatis Lodziensis Folia Oeconomica 253:55–70Google Scholar
 Górecka D, Szałucka M (2013) Country market selection in international expansion using multicriteria decision aiding methods. MCDM 8:31–55Google Scholar
 Greco S, Matarazzo B, Slowinski R (2002) Rough set methodology for sorting problems in presence of multiple attributes and criteria. EJOR 138:247–259CrossRefGoogle Scholar
 Hwang CL, Yoon K (1981) Multiple attribute decision making methods and applications: a state of the art survey. Springer, New YorkCrossRefGoogle Scholar
 Jahanshahloo GR, Hosseinzadeh LF, Izadikhah M (2006) Extension of the TOPSIS method for decisionmaking problems with fuzzy data. Appl Math Comput 185:1544–1551Google Scholar
 Jakubowicz S (1987) Work characteristics of a “Good” physics teacher on the basis of his lessons. RPBP.III.30.VI.4.6. The University of Wrocław, Wrocław (copied manuscript, in Polish) Google Scholar
 Jakubowicz S, KonarzewskaGubała E (1989) Work characteristics of a physics teacher. University of Wrocław, Wrocław (copied manuscript, in Polish) Google Scholar
 KonarzewskaGubała E (1987) Multicriteria decision analysis with bipolar reference system: theoretical model and computer implementation. Archiwum Automatyki i Telemechaniki 32(4):289–300Google Scholar
 KonarzewskaGubała E (1989) BIPOLAR: multiple criteria decision aid using bipolar reference system, LAMSADE, Cahier et Documents No. 56, ParisGoogle Scholar
 KonarzewskaGubała E (1991) Multiple criteria decision aid: system bipolar, vol 551. Scientific Works of the University of Economics, Wrocław (in Polish) Google Scholar
 KonarzewskaGubała E (1996) Supporting an effective performance appraisal system. Argumenta Oeconomica 1:123–125Google Scholar
 KonarzewskaGubała E (2002) Multiple criteria company benchmarking using the Bipolar method. In: Trzaskalik T, Michnik J (eds) Multiple objective and goal programming. Recent developments. Springer, Heidelberg, pp 338–350CrossRefGoogle Scholar
 Larichev O (2001) Ranking multicriteria alternatives: the method ZAPROS III. Eur J Oper Res 131:550–558CrossRefGoogle Scholar
 Larichev O, Moskovich HM (1995) ZAPROSLM—a method and system for ordering multiattribute alternatives. Eur J Oper Res 82(3):503–521CrossRefGoogle Scholar
 Liu H, Jiang L, Martínez L (2018) A dynamic multicriteria decision making model with bipolar linguistic term sets. Expert Syst Appl 95:104–112CrossRefGoogle Scholar
 Lootsma FA (1992) The REMBRANDT system for multicriteria decision analysis via pairwise comparisons or direct rating, Report 9205, Faculty of Technical Mathematics and Informatics, Delft University of Technology, DelftGoogle Scholar
 Lu M, Wei G, Alsaadi FE, Hayat T, Alsaedi A (2017) Bipolar 2tuple linguisticaggregation operators in multiple attribute decision making. J Intell Fuzzy Syst 33(2):1197–1207CrossRefGoogle Scholar
 Merighi D (1980) Un modello di valutazione rispetto insiemi di riferimento assegnati. Ricerca Operativa no 13:31–52Google Scholar
 Michałowski W, Szapiro T (1992) A bireference procedure for interactive multiple criteria programming. Oper Res 40(2):247–258CrossRefGoogle Scholar
 Mikhailov L, Tzvetinov P (2004) Evaluation of services using a fuzzy analytic hierarchy process. Appl Soft Comput J 5:23–33CrossRefGoogle Scholar
 Nowak M (2005) Investment project evaluation by simulation and multiple criteria decision aiding procedure. J Civ Eng Manag 11:193–202CrossRefGoogle Scholar
 Nowak M (2006) INSDECM—an interactive procedure for stochastic multicriteria decision problems. Eur J Oper Res 175:1413–1430CrossRefGoogle Scholar
 Nowak M (2008) Interaktywne wielokryterialne wspomaganie decyzji w warunkach ryzyka: metody i zastosowania. Wydawnictwo Akademii Ekonomicznej w Katowicach, Katowice (in Polish) Google Scholar
 Nowak M (2010) Tradeoff analysis in discrete decision making problems under risk. Lecture notes in economics and mathematical systems. In: Jones WD, Tamiz M, Ries J (eds) New developments in multiple objective and goal programming, vol 638. Springer, Berlin, pp 103–115CrossRefGoogle Scholar
 Opricovic S (1998) Multicriteria optimization of civil engineering systems. Technical report. Faculty of Civil Engineering, BelgradeGoogle Scholar
 Opricovic S, Tzeng GH (2004) Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res 156(2):445–455CrossRefGoogle Scholar
 Roy B (1985) Methodologie Multicritere d’Aide a la Decision. Economica, ParisGoogle Scholar
 Roy B, Bouyssou D (1993) Aide Multicritere a la Decision: Methodes at Cas. Economica, ParisGoogle Scholar
 Saaty TL (1980) The analytic hierarchy process. McGrawHill, New YorkGoogle Scholar
 Saaty TL (1996) Decision making with dependence and feedback. The analytic network process. RWS Publications, PittsburghGoogle Scholar
 Shen KY, Tzeng GH (2016) Contextual improvement planning by fuzzyrough machine learning: a novel bipolar approach for business analytics. Int J Fuzzy Syst 18(6):940–955CrossRefGoogle Scholar
 Skulimowski A (1996) Decision support systems based on reference sets. AGH, KrakówGoogle Scholar
 Trzaskalik T (1987) Model of multistage multicriteria decision processes applying reference sets. In: Decision models with incomplete information. Scientific Works of the University of Economics, Wrocław, vol 413, pp 73–93 (in Polish) Google Scholar
 Trzaskalik T (ed) (2014) Wielokryterialne wspomaganie decyzji. Metody i zastosowania. PWE, Warszawa (in Polish) Google Scholar
 Trzaskalik T, Sitarz S (2012) How to deal with overgood and underbad alternatives in bipolar method. In: Watada J, Watanabe T, PhillipsWren G, Howlett R, Jain LC (eds) Proceedings of the 4th international conference on intelligent decision technologies (IDT´2012), intelligent decision technologies smart innovation, systems and technologies, vol 16, pp 345–354Google Scholar
 Trzaskalik T, Sitarz S, Dominiak C (2013) Unified procedure for Bipolar method. In: Zadnik L, Żerovnik J, Povh J, Drobne S, Lisec A (eds) The 12th international sympodium on operational research, Slovenian Society Informatika—Section for Operational Research, Slovenia, pp 213–218Google Scholar
 Tzeng GH, Huang JJ (2011) Multiple attribute decision making. Methods and applications. CRC Press, LondonCrossRefGoogle Scholar
 Wang L, Zhang H, Wang J (2018) Frank Choquet Bonferroni mean operators of bipolar neutrosophic sets and their application to multicriteria decisionmaking problems. Int J Fuzzy Syst 20(1):13–28CrossRefGoogle Scholar
 Zadrożny S, Kacprzyk J, De Tré G (2012) Bipolar queries in textual informationretrieval: a new perspective. Inf Process Manag 48(3):390–398CrossRefGoogle Scholar
 Zaraś K, Martel JM (1994) Multiattribute analysis based on stochastic dominance. In: Munier B, Machina MJ (eds) Models and experiments in risk and rationality. Kluwer Academic Publishers, DordrechtGoogle Scholar
Copyright information
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.