Advertisement

Master production schedule using robust optimization approaches in an automobile second-tier supplier

  • Antonio G. Martín
  • Manuel Díaz-MadroñeroEmail author
  • Josefa Mula
Original Paper
  • 19 Downloads

Abstract

This paper considers a real-world automobile second-tier supplier that manufactures decorative surface finishings of injected parts provided by several suppliers, and which devises its master production schedule by a manual spreadsheet-based procedure. The imprecise production time in this manufacturer’s production process is incorporated into a deterministic mathematical programming model to address this problem by two robust optimization approaches. The proposed model and the corresponding robust solution methodology improve production plans by optimizing the production, inventory and backlogging costs, and demonstrate the their feasibility for a realistic master production schedule problem that outperforms the heuristic decision-making procedure currently being applied in the firm under study.

Keywords

Robust optimization Master production schedule Uncertainty Automotive industry 

Notes

Funding

Funding was provided by Horizon 2020 Framework Programme (Grant Agreement No. 636909) in the frame of the “Cloud Collaborative Manufacturing Networks” (C2NET) project.

References

  1. Alem DJ, Morabito R (2012) Production planning in furniture settings via robust optimization. Comput Oper Res 39:139–150.  https://doi.org/10.1016/j.cor.2011.02.022 CrossRefGoogle Scholar
  2. Aloulou MA, Dolgui A, Kovalyov MY (2014) A bibliography of non-deterministic lot-sizing models. Int J Prod Res 52:2293–2310.  https://doi.org/10.1080/00207543.2013.855336 CrossRefGoogle Scholar
  3. As’ad R, Demirli K, Goyal SK (2015) Coping with uncertainties in production planning through fuzzy mathematical programming: application to steel rolling industry. Int J Oper Res 22:1–30.  https://doi.org/10.1504/IJOR.2015.065937 Google Scholar
  4. Atamturk A, Zhang M (2007) Two-stage robust network flow and design under demand uncertainty. Oper Res 55:662–673.  https://doi.org/10.1287/opre.1070.0428 CrossRefGoogle Scholar
  5. Aytac B, Wu SD (2013) Characterization of demand for short life-cycle technology products. Ann Oper Res 203:255–277.  https://doi.org/10.1007/s10479-010-0771-5 CrossRefGoogle Scholar
  6. Ben-Tal A, Nemirovski A (1998) Robust convex optimization. Math Oper Res 23:769–805.  https://doi.org/10.1287/moor.23.4.769 CrossRefGoogle Scholar
  7. Ben-Tal A, Nemirovski A (2000) Robust solutions of linear programming problems contaminated with uncertain data. Math Program 88:411–424.  https://doi.org/10.1007/PL00011380 CrossRefGoogle Scholar
  8. Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52:35–53.  https://doi.org/10.1287/opre.1030.0065 CrossRefGoogle Scholar
  9. Caulkins JJ, Morrison E, Weidemann T (2007) Spreadsheet errors and decision making: evidence from field interviews. J Organ End User Comput 19:1–23CrossRefGoogle Scholar
  10. Childerhouse P, Towill DR (2002) Analysis of the factors affecting real-world value stream performance. Int J Prod Res 40:3499–3518.  https://doi.org/10.1080/00207540210152885 CrossRefGoogle Scholar
  11. Chu SCK (1995) A mathematical programming approach towards optimized master production scheduling. Int J Prod Econ 38:269–279.  https://doi.org/10.1016/0925-5273(95)00015-G CrossRefGoogle Scholar
  12. Conlon JR (1976) Is your master production schedule feasible? Prod Invent Manag 17:56–63Google Scholar
  13. De La Vega J, Munari P, Morabito R (2017) Robust optimization for the vehicle routing problem with multiple deliverymen. Cent Eur J Oper Res.  https://doi.org/10.1007/s10100-017-0511-x Google Scholar
  14. Díaz-Madroñero M, Mula J, Jiménez M (2014a) Fuzzy goal programming for material requirements planning under uncertainty and integrity conditions. Int J Prod Res 52:6971–6988.  https://doi.org/10.1080/00207543.2014.920115 CrossRefGoogle Scholar
  15. Díaz-Madroñero M, Mula J, Peidro D (2014b) A review of discrete-time optimization models for tactical production planning. Int J Prod Res 52:5171–5205.  https://doi.org/10.1080/00207543.2014.899721 CrossRefGoogle Scholar
  16. Díaz-Madroñero M, Peidro D, Mula J (2014c) A fuzzy optimization approach for procurement transport operational planning in an automobile supply chain. Appl Math Model 38:5705–5725.  https://doi.org/10.1016/j.apm.2014.04.053 CrossRefGoogle Scholar
  17. Dolgui A, Ben Ammar O, Hnaien F et al (2013) Supply planning and inventory control under lead time uncertainty: a review. Stud Inform Control 22:255–268CrossRefGoogle Scholar
  18. Dzuranin AC, Slater RD (2014) Business risks all identified? If you’re using a spreadsheet, think again. J Corp Account Finance 25:25–30.  https://doi.org/10.1002/jcaf.21936 CrossRefGoogle Scholar
  19. Englberger J, Herrmann F, Manitz M (2016) Two-stage stochastic master production scheduling under demand uncertainty in a rolling planning environment. Int J Prod Res 54:6192–6215.  https://doi.org/10.1080/00207543.2016.1162917 CrossRefGoogle Scholar
  20. Gabrel V, Murat C, Thiele A (2014) Recent advances in robust optimization: an overview. Eur J Oper Res 235:471–483CrossRefGoogle Scholar
  21. Gharakhani M, Taghipour T, Farahani KJ (2010) A robust multi-objective production planning. Int J Ind Eng Comput 1:73–78.  https://doi.org/10.5267/j.ijiec.2010.01.007 Google Scholar
  22. González JJ, Reeves GR (1983) Master production scheduling: a multiple-objective linear programming approach. Int J Prod Res 21:553–562.  https://doi.org/10.1080/00207548308942390 CrossRefGoogle Scholar
  23. Gorissen BL, Yanıkoğlu İ, den Hertog D (2015) A practical guide to robust optimization. Omega 53:124–137.  https://doi.org/10.1016/j.omega.2014.12.006 CrossRefGoogle Scholar
  24. Grubbstrom RW, Tang O (2000) An overview of input-output analysis applied to production-inventory systems. Econ Syst Res 12:3–25.  https://doi.org/10.1080/095353100111254 CrossRefGoogle Scholar
  25. Grubbström RW, Bogataj M, Bogataj L (2010) Optimal lotsizing within MRP theory. Annu Rev Control 34:89–100.  https://doi.org/10.1016/J.ARCONTROL.2010.02.004 CrossRefGoogle Scholar
  26. Haojie Y, Lixin M, Canrong Z (2017) Capacitated lot-sizing problem with one-way substitution: a robust optimization approach. In: In 2017 3rd international conference on information management (ICIM). Institute of Electrical and Electronics Engineers Inc., pp 159–163Google Scholar
  27. Kara G, Özmen A, Weber G-W (2017) Stability advances in robust portfolio optimization under parallelepiped uncertainty. Cent Eur J Oper Res.  https://doi.org/10.1007/s10100-017-0508-5 Google Scholar
  28. Kawas B, Laumanns M, Pratsini E (2013) A robust optimization approach to enhancing reliability in production planning under non-compliance risks. OR Spectr 35:835–865.  https://doi.org/10.1007/s00291-013-0339-2 CrossRefGoogle Scholar
  29. Kimms A (1998) Stability measures for rolling schedules with applications to capacity expansion planning, master production scheduling, and lot sizing. Omega 26:355–366.  https://doi.org/10.1016/S0305-0483(97)00056-X CrossRefGoogle Scholar
  30. Ko M, Tiwari A, Mehnen J (2010) A review of soft computing applications in supply chain management. Appl Soft Comput 10:661–674.  https://doi.org/10.1016/j.asoc.2009.09.004 CrossRefGoogle Scholar
  31. Körpeolu E, Yaman H, Selim Aktürk M (2011) A multi-stage stochastic programming approach in master production scheduling. Eur J Oper Res 213:166–179.  https://doi.org/10.1016/j.ejor.2011.02.032 CrossRefGoogle Scholar
  32. Kovačić D, Bogataj M (2013) Reverse logistics facility location using cyclical model of extended MRP theory. Cent Eur J Oper Res 21:41–57.  https://doi.org/10.1007/s10100-012-0251-x CrossRefGoogle Scholar
  33. Kuchta D (2011) A concept of a robust solution of a multicriterial linear programming problem. Cent Eur J Oper Res 19:605–613.  https://doi.org/10.1007/s10100-010-0150-y CrossRefGoogle Scholar
  34. Lage Junior M, Godinho Filho M (2017) Master disassembly scheduling in a remanufacturing system with stochastic routings. Cent Eur J Oper Res 25:123–138.  https://doi.org/10.1007/s10100-015-0428-1 CrossRefGoogle Scholar
  35. Lee SM, Moore LJ (1974) Practical approach to production scheduling. Prod Invent Manag J 15:79–92Google Scholar
  36. Lehtimaki AK (1987) Approach for solving decision planning of master scheduling by utilizing theory of fuzzy sets. Int J Prod Res 25:1781–1793Google Scholar
  37. Li Z, Li Z (2015) Optimal robust optimization approximation for chance constrained optimization problem. Comput Chem Eng 74:89–99.  https://doi.org/10.1016/j.compchemeng.2015.01.003 CrossRefGoogle Scholar
  38. Li Z, Ding R, Floudas CA (2011) A Comparative theoretical and computational study on robust counterpart optimization: I. Robust linear optimization and robust mixed integer linear optimization. Ind Eng Chem Res 50:10567–10603.  https://doi.org/10.1021/ie200150p CrossRefGoogle Scholar
  39. Li Z, Tang Q, Floudas CA (2012) A comparative theoretical and computational study on robust counterpart optimization: II. Probabilistic guarantees on constraint satisfaction. Ind Eng Chem Res 51:6769–6788.  https://doi.org/10.1021/ie201651s CrossRefGoogle Scholar
  40. Mula J, Poler R, Garcia-Sabater J, Lario F (2006a) Models for production planning under uncertainty: a review. Int J Prod Econ 103:271–285.  https://doi.org/10.1016/j.ijpe.2005.09.001 CrossRefGoogle Scholar
  41. Mula J, Poler R, Garcia JP (2006b) MRP with flexible constraints: a fuzzy mathematical programming approach. Fuzzy Sets Syst 157:74–97.  https://doi.org/10.1016/j.fss.2005.05.045 CrossRefGoogle Scholar
  42. Mula J, Poler R, Garcia-Sabater JP (2008) Capacity and material requirement planning modelling by comparing deterministic and fuzzy models. Int J Prod Res 46:5589–5606.  https://doi.org/10.1080/00207540701413912 CrossRefGoogle Scholar
  43. Mulvey JM, Vanderbei RJ, Zenios SA (1995) Robust optimization of large-scale systems. Oper Res 43:264–281.  https://doi.org/10.1287/opre.43.2.264 CrossRefGoogle Scholar
  44. Nannapaneni S, Mahadevan S (2014) Uncertainty quantification in performance evaluation of manufacturing processes. In: 2014 IEEE international conference on Big Data (Big Data). IEEE, pp 996–1005Google Scholar
  45. Ng TS, Fowler J (2007) Semiconductor production planning using robust optimization. In: 2007 IEEE international conference on industrial engineering and engineering management. IEEE, pp 1073–1077Google Scholar
  46. Peidro D, Mula J, Poler RR, Lario F-C (2009) Quantitative models for supply chain planning under uncertainty: a review. Int J Adv Manuf Technol 43:400–420.  https://doi.org/10.1007/s00170-008-1715-y CrossRefGoogle Scholar
  47. Pochet Y, Wolsey LA (2006) Production planning by mixed integer programming. Springer, BerlinGoogle Scholar
  48. Powell SG, Baker KR, Lawson B (2008) A critical review of the literature on spreadsheet errors. Decis Support Syst 46:128–138.  https://doi.org/10.1016/j.dss.2008.06.001 CrossRefGoogle Scholar
  49. Rahmani D, Ramezanian R, Fattahi P, Heydari M (2013) A robust optimization model for multi-product two-stage capacitated production planning under uncertainty. Appl Math Model 37:8957–8971.  https://doi.org/10.1016/j.apm.2013.04.016 CrossRefGoogle Scholar
  50. Sahinidis NV (2004) Optimization under uncertainty: state-of-the-art and opportunities. Comput Chem Eng 28:971–983.  https://doi.org/10.1016/j.compchemeng.2003.09.017 CrossRefGoogle Scholar
  51. Sakhaii M, Tavakkoli-Moghaddam R, Bagheri M, Vatani B (2015) A robust optimization approach for an integrated dynamic cellular manufacturing system and production planning with unreliable machines. Appl Math Model 40:169–191.  https://doi.org/10.1016/j.apm.2015.05.005 CrossRefGoogle Scholar
  52. Soyster AL (1973) Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper Res 21:1154–1157.  https://doi.org/10.1287/opre.21.5.1154 CrossRefGoogle Scholar
  53. Supriyanto I, Noche B (2011) Fuzzy multi-objective linear programming and simulation approach to the development of valid and realistic master production schedule. Logist J.  https://doi.org/10.2195/lj_proc_supriyanto_de_201108_01 Google Scholar
  54. Tavakkoli-Moghaddam R, Sakhaii M, Vatani B et al (2014) A robust model for a dynamic cellular manufacturing system with production planning. Int J Eng 27:587–598.  https://doi.org/10.5829/idosi.ije.2014.27.04a.09 Google Scholar
  55. Vargas V, Metters R (2011) A master production scheduling procedure for stochastic demand and rolling planning horizons. Int J Prod Econ 132:296–302.  https://doi.org/10.1016/j.ijpe.2011.04.025 CrossRefGoogle Scholar
  56. Wang J, Shu Y-F (2005) Fuzzy decision modeling for supply chain management. Fuzzy Sets Syst 150:107–127CrossRefGoogle Scholar
  57. Weng ZK, Parlar M (2005) Managing build-to-order short life-cycle products: benefits of pre-season price incentives with standardization. J Oper Manag 23:482–495.  https://doi.org/10.1016/j.jom.2004.10.008 CrossRefGoogle Scholar
  58. Werner R (2008) Cascading: an adjusted exchange method for robust conic programming. Cent Eur J Oper Res 16:179–189.  https://doi.org/10.1007/s10100-007-0047-6 CrossRefGoogle Scholar
  59. Yu C-S, Li H-L (2000) A robust optimization model for stochastic logistic problems. Int J Prod Econ 64:385–397.  https://doi.org/10.1016/S0925-5273(99)00074-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Centre on Production Management and Engineering (CIGIP)Universitat Politècnica de ValènciaAlcoySpain

Personalised recommendations