Advertisement

Using PROMETHEE to assess bioenergy pathways

  • Tim Schröder
  • Lars-Peter LauvenEmail author
  • Beatriz Beyer
  • Nils Lerche
  • Jutta Geldermann
Original Paper
  • 179 Downloads

Abstract

Investment and policy decisions in the context of sustainable development are classic application areas for multi-criteria decision analysis. Ranking various pathways, i.e. conversion routes, for biomass use in the energy sector is particularly challenging. Depending on how ecological, economic, and social criteria are weighed, a multi-criteria decision analysis can lead to significantly contrasting recommendations. In this paper, we present a decision support for eleven energy pathways using decision criteria drawn from all three sustainability dimensions—ecological, economic, and social. For the graphical presentation of the relatively large number of pathways and criteria weightings, we introduce a novel visualization approach that combines the results of both PROMETHEE I and II. This visualization approach permits stakeholders to quickly and intuitively gather insights about the result structure and the consequences of different input parameters, for instance different criteria weightings.

Keywords

Multi-criteria Decision support PROMETHEE Visualization Bioenergy 

Notes

Acknowledgements

This research was funded by the European Commission Intelligent Energy—Europe (IEE) project BIOTEAM (Contract No.: 410 IEE/12/842/SI2.645699) from the EU program “Intelligent Energy—Europe (IEE)” We are grateful to our colleagues from the BIOTEAM (‘Optimizing Pathways and Market Systems for Enhanced Competitiveness of Sustainable Bio-Energy’) project for the fruitful cooperation. We would also like to thank the anonymous reviewers for their helpful comments.

Supplementary material

10100_2018_590_MOESM1_ESM.docx (81 kb)
Supplementary material 1 (DOCX 80 kb)
10100_2018_590_MOESM2_ESM.docx (80 kb)
Supplementary material 2 (DOCX 80 kb)

References

  1. Baskar C, Baskar S, Dhillon RS (2012) Biomass conversion. The interface of biotechnology, chemistry and materials science. Springer, BerlinGoogle Scholar
  2. Belton V, Stewart T (2002) Multiple criteria decision analysis—an integrated approach. Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  3. Benbasat I, Dexter AS (1985) An experimental evaluation of graphical and color-enhanced information presentation. Manag Sci 31(11):1348–1364.  https://doi.org/10.1287/mnsc.31.11.1348 CrossRefGoogle Scholar
  4. Beyer B, Lauven L-P, Schröder T, Geldermann J (2014) BIOTEAM: bioenergy pathway sustainability assessment in Germany. Deliverable 2.4 Germany. http://sustainable-biomass.eu/images/deliverables/D2.4/D2.4_Pathways%20Sustainability%20Assessment_DE_advanced.pdf. Accessed 23 Feb 2018
  5. Beyer B, Geldermann J, Lauven L-P, Schröder T (2016) BIOTEAM: strategic bioenergy decisions using multi criteria decision analysis. Deliverable 5.2 Germany. http://sustainable-biomass.eu/images/deliverables/D5.2/D5.2_Multi%20Criteria_DE_final.pdf. Accessed 23 Feb 2018
  6. BIOTEAM (2014) Harmonized bioenergy pathway sustainability assessment framework, advanced version. http://sustainable-biomass.eu/images/deliverables/BIOTEAM_D2_3_updated_19082014.pdf. Accessed 27 Mar 2018
  7. Bohanec M, Trdin N, Kontić B (2017) A qualitative multi-criteria modelling approach to the assessment of electric energy production technologies in Slovenia. Cent Eur J Oper Res 25(3):611–625.  https://doi.org/10.1007/s10100-016-0457-4 CrossRefGoogle Scholar
  8. Brans JP, Mareschal B (2005) PROMETHEE Methods. In: Figueira J, Greco S, Ehrgott M (eds) Multiple criteria decision analysis: state of the art surveys. Springer, Boston, pp 163–195CrossRefGoogle Scholar
  9. Bundesverband der Energie- und Wasserwirtschaft (2016) Heizungsmarkt Wohnungswirtschaft: Befragung zum Thema Heizen und Energie in der Wohnungswirtschaft. [Heating Market Housing Sector: Survey on the Topic Heating and Energy in the Housing Sector], BerlinGoogle Scholar
  10. DeSanctis G (1984) Computer graphics as decision aids. Directions for Research. Decis Sci 15(4):463–487CrossRefGoogle Scholar
  11. Dickson GW, DeSanctis G, McBride DJ (1986) Understanding the effectiveness of computer graphics for decision support. A cumulative experimental approach. Commun ACM 29(1):40–47CrossRefGoogle Scholar
  12. Dyer JS (2005) MAUT—multiattribute utility theory. In: Figueira J, Greco S, Ehrgott M (eds) Multiple criteria decision analysis: state of the art surveys. Springer, Boston, pp 265–295CrossRefGoogle Scholar
  13. Edwards W (1977) How to use multiattribute utility measurement for social decisionmaking. IEEE Trans Syst Man Cybern 7(5):326–340.  https://doi.org/10.1109/TSMC.1977.4309720 CrossRefGoogle Scholar
  14. Eigner-Thiel S, Schmehl M, Ibendorf J, Geldermann J (2013) Assessment of different bioenergy concepts regarding sustainable Development. In: Ruppert H, Kappas M, Ibendorf J (eds) Sustainable bioenergy production—an integrated approach. Springer, Berlin, pp 339–384CrossRefGoogle Scholar
  15. Fasolo B, Bana e Costa CA (2014) Tailoring value elicitation to decision makers’ numeracy and fluency: expressing value judgments in numbers or words. Omega 44:83–90.  https://doi.org/10.1016/j.omega.2013.09.006 CrossRefGoogle Scholar
  16. French S, Geldermann J (2005) The varied contexts of environmental decision problems and their implications for decision support. Environ Sci Policy 8(4):378–391.  https://doi.org/10.1016/j.envsci.2005.04.008 CrossRefGoogle Scholar
  17. Geldermann J (1999) Entwicklung eines multikriteriellen Entscheidungsunterstützungssystems zur integrierten Technikbewertung. [Development of a multi-criteria decision support system for an integrated technology assessment]. Fortschrittsberichte VDI, Reihe 16, Nr. 105. VDI-Verlag, DüsseldorfGoogle Scholar
  18. Geldermann J, Schöbel A (2011) On the similarities of some multi-criteria decision analysis methods. J Multi Criteria Decis Anal 18(3–4):219–230.  https://doi.org/10.1002/mcda.468 CrossRefGoogle Scholar
  19. Geldermann J, Bertsch V, Treitz M, French S, Papamichail KN, Hämäläinen RP (2009) Multi-criteria decision support and evaluation of strategies for nuclear remediation management. Omega 37(1):238–251.  https://doi.org/10.1016/j.omega.2006.11.006 CrossRefGoogle Scholar
  20. Gervásio H, Simões da Silva L (2012) A probabilistic decision-making approach for the sustainable assessment of infrastructures. Expert Syst Appl 39(8):7121–7131.  https://doi.org/10.1016/j.eswa.2012.01.032 CrossRefGoogle Scholar
  21. Greco S, Ehrgott M, Figueira J (eds) (2016) Multiple criteria decision analysis. State of the art surveys. International Series in Operations Research & Management Science, vol 233, 2nd edn. Springer, New YorkGoogle Scholar
  22. Hayashi T, van Ierland Ekko C, Zhu X (2014) A holistic sustainability assessment tool for bioenergy using the global bioenergy partnership (GBEP) sustainability indicators. Biomass Bioenerg 66:70–80.  https://doi.org/10.1016/j.biombioe.2014.01.040 CrossRefGoogle Scholar
  23. Hwang CL, Yoon K (1981) Multiple attribute decision making: methods and applications: a state-of-the-art survey. Springer, HeidelbergGoogle Scholar
  24. Kakogiannis N, Kontogiorgos P, Sarri E, Papavassilopoulos GP (2016) Multicriteria energy policy investments and energy market clearance via integer programming. Cent Eur J Oper Res 24(3):515–534.  https://doi.org/10.1007/s10100-014-0351-x CrossRefGoogle Scholar
  25. Kempener R, Beck J, Petrie J (2009) Design and analysis of bioenergy networks. J Ind Ecol 13(2):284–305.  https://doi.org/10.1111/j.1530-9290.2009.00120.x CrossRefGoogle Scholar
  26. Korhonen P, Moskowitz H, Wallenius J (1990) Choice behavior in interactive multiple-criteria decision making. Ann Oper Res 23(1):161–179.  https://doi.org/10.1007/BF02204844 CrossRefGoogle Scholar
  27. Langhans SD, Lienert J (2016) Four common simplifications of multi-criteria decision analysis do not hold for river rehabilitation. PLoS ONE.  https://doi.org/10.1371/journal.pone.0150695 Google Scholar
  28. Lerche N, Wilkens I, Schmehl M, Eigner-Thiel S, Geldermann J (2017) Using methods of multi-criteria decision making to provide decision support concerning local bioenergy projects. Socio Econ Plan Sci.  https://doi.org/10.1016/j.seps.2017.08.002 Google Scholar
  29. Madlener R, Kowalski K, Stagl S (2007) New ways for the integrated appraisal of national energy scenarios: the case of renewable energy use in Austria. Energy Policy 35(12):6060–6074.  https://doi.org/10.1016/j.enpol.2007.08.015 CrossRefGoogle Scholar
  30. Mardani A, Zavadskas EK, Khalifah Z, Zakuan N, Jusoh A, Nor KM, Khoshnoudi M (2017) A review of multi-criteria decision-making applications to solve energy management problems: two decades from 1995 to 2015. Renew Sustain Energy Rev 71:216–256.  https://doi.org/10.1016/j.rser.2016.12.053 CrossRefGoogle Scholar
  31. Mareschal B (1988) Weight stability intervals in multicriteria decision aid. Eur J Oper Res 33(1):54–64.  https://doi.org/10.1016/0377-2217(88)90254-8 CrossRefGoogle Scholar
  32. Mareschal B, de Smet Y (2009) Visual PROMETHEE. developments of the PROMETHEE & GAIA multicriteria decision aid methods. In: IEEE international conference on industrial engineering and engineering management, 2009. IEEM 2009; 8–11 December 2009, Hong Kong. IEEE, Piscataway, NJ, pp 1646–1649Google Scholar
  33. Martín-Gamboa M, Iribarren D, García-Gusano D, Dufour J (2017) A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. J Clean Prod 150:164–174.  https://doi.org/10.1016/j.jclepro.2017.03.017 CrossRefGoogle Scholar
  34. Miettinen K (2014) Survey of methods to visualize alternatives in multiple criteria decision making problems. OR Spectrum 36(1):3–37.  https://doi.org/10.1007/s00291-012-0297-0 CrossRefGoogle Scholar
  35. Munda G (2005) Measuring sustainability. A multi-criterion framework. Environ Dev Sustain 7(1):117–134.  https://doi.org/10.1007/s10668-003-4713-0 CrossRefGoogle Scholar
  36. Munda G (2008) Social multi-criteria evaluation for a sustainable economy. Springer, HeidelbergCrossRefGoogle Scholar
  37. Oberschmidt J, Geldermann J, Ludwig J, Schmehl M (2010) Modified PROMETHEE approach for assessing energy technologies. Int J Energy Sect Manag 4(2):183–212.  https://doi.org/10.1108/17506221011058696 CrossRefGoogle Scholar
  38. Pöyhönen M, Vrolijk H, Hämäläinen RP (2001) Behavioral and procedural consequences of structural variation in value trees. Eur J Oper Res 134(1):216–227.  https://doi.org/10.1016/S0377-2217(00)00255-1 CrossRefGoogle Scholar
  39. Remus W (1987) A study of graphical and tabular displays and their interaction with environmental complexity. Manag Sci 33(9):1200–1204CrossRefGoogle Scholar
  40. Renn O, Schweizer P-J (2009) Inclusive risk governance: concepts and application to environmental policy making. Environ Policy Gov 19(3):174–185.  https://doi.org/10.1002/eet.507 CrossRefGoogle Scholar
  41. Roy B (2005) Paradigms and Challenges. In: Figueira J, Greco S, Ehrgott M (eds) Multiple criteria decision analysis: state of the art surveys. Springer, Boston, pp 3–24CrossRefGoogle Scholar
  42. Saaty TL (2005) Making and validating complex decisions with the AHP/ANP. J Syst Sci Syst Eng 14(1):1–36CrossRefGoogle Scholar
  43. Sapkota K, Raju P, Chapma C, Byrne W, Melville L (2015) Bioenergy ontology for automatic pathway generation. Int J Knowl Eng 1(1):1–8.  https://doi.org/10.7763/IJKE.2015.V1.1 CrossRefGoogle Scholar
  44. Seppälä J, Hämäläinen RP (2001) On the meaning of the distance-to-target weighting method and normalisation in life cycle impact assessment. Int J Life Cycle Assess 6(4):211–218CrossRefGoogle Scholar
  45. Sinclair P, Cohen B, Hansen Y, Basson L, Clift R (2015) Stakeholder engagement within the sustainability assessment of bioenergy: case studies in heat, power and perennial and annual crops from the UK. Biomass Bioenerg 73:11–22.  https://doi.org/10.1016/j.biombioe.2014.11.017 CrossRefGoogle Scholar
  46. Spengler T, Geldermann J, Hähre S, Sieverdingbeck A, Rentz O (1998) Development of a multiple criteria based decision support system for environmental assessment of recycling measures in the iron and steel making industry. J Clean Prod 6(1):37–52.  https://doi.org/10.1016/S0959-6526(97)00048-6 CrossRefGoogle Scholar
  47. Steinhilber S, Geldermann J, Wietschel M (2016) Renewables in the EU after 2020: a multi-criteria decision analysis in the context of the policy formation process. EURO J Decis Process 4(1–2):119–155.  https://doi.org/10.1007/s40070-016-0060-x CrossRefGoogle Scholar
  48. Stewart TJ (1992) A critical survey on the status of multiple criteria decision making theory and practice. Omega 20(5–6):569–586.  https://doi.org/10.1016/0305-0483(92)90003-P CrossRefGoogle Scholar
  49. Strantzali E, Aravossis K (2016) Decision making in renewable energy investments: a review. Renew Sustain Energy Rev 55:885–898.  https://doi.org/10.1016/j.rser.2015.11.021 CrossRefGoogle Scholar
  50. Thery R, Zarate P (2009) Energy planning: a multi-level and multicriteria decision making structure proposal. Cent Eur J Oper Res 17(3):265–274.  https://doi.org/10.1007/s10100-009-0091-5 CrossRefGoogle Scholar
  51. Vetschera R (1994) Visualisierungstechniken in Entscheidungsproblemen bei mehrfacher Zielsetzung. OR Spektrum 16:227–241CrossRefGoogle Scholar
  52. Vinodh S, Jeya Girubha R (2012) PROMETHEE based sustainable concept selection. Appl Math Model 36(11):5301–5308.  https://doi.org/10.1016/j.apm.2011.12.030 CrossRefGoogle Scholar
  53. von Winterfeldt D, Edwards W (1986) Decision analysis and behavioral research. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chair of Production and LogisticsUniversity of GöttingenGöttingenGermany

Personalised recommendations