Waste-to-energy is compatible and complementary with recycling in the circular economy

  • Jo Van CaneghemEmail author
  • Karel Van Acker
  • Johan De Greef
  • Guido Wauters
  • Carlo Vandecasteele


This paper reviews the role of conventional waste-to-energy, i.e. incineration of (mainly) municipal solid waste with energy recovery, in the circular economy. It shows that, although waste-to-energy figures on a lower level in the European waste hierarchy than recycling, it plays, from an overall sustainability point of view, an essential, complementary and facilitating role within the circular economy. First of all, waste-to-energy combusts (or should combust) only waste that is non-recyclable for economic, technical or environmental reasons. This way waste-to-energy is compatible with recycling and only competes with landfill, which is lower in the waste hierarchy. Furthermore, waste-to-energy keeps material cycles, and ultimately the environment and humans largely free from toxic substances. Finally, waste-to-energy allows recovery of both energy and materials from non-recyclable waste and hence contributes to keeping materials in circulation. These arguments are elaborated and illustrated with many examples. This paper also points out the pitfalls of a circular economy if it merely focuses on material cycles, disregarding economic, environmental, social and health aspects of sustainability.

Graphical abstract


Waste-to-energy Circular economy Waste Recycling 



  1. AEB Amsterdam (2015) For a clean society. Corporate brochure. Accessed Oct 2018
  2. Arickx S, Van Gerven T, Knaepkens T, Hindrix K, Evens R, Vandecasteele C (2007) Influence of treatment techniques on Cu leaching and different organic fractions in MSWI bottom ash leachate. Waste Manag 27:1422–1427CrossRefGoogle Scholar
  3. ATSDR - Agency for toxic substances and disease registry) (2017) Public health statement Polybrominated Diphenyl Ethers (PBDEs)Google Scholar
  4. Belevi H, Moench H (2000) Factors determining the element behavior in municipal solid waste incinerators. 1. Field studies. Environ Sci Technol 34:2501–2506CrossRefGoogle Scholar
  5. Bernstad A, Jansen JL (2012) Review of comparative LCAs of food waste management systems—current status and potential improvements. Waste Manag 32:2439–2455CrossRefGoogle Scholar
  6. Billen P, Verbinnen B, De Smet M, Dockx G, Ronsse S, Villani K, De Greef J, Van Caneghem J, Vandecasteele C (2015a) Comparison of solidification/stabilization of fly ash and air pollution control residues from municipal solid waste incinerators with and without cement addition. J Mater Cycles Waste Manag 17:229–236CrossRefGoogle Scholar
  7. Billen P, Costa J, Van der Aa L, Van Caneghem J, Vandecasteele C (2015b) Electricity from poultry manure: a cleaner alternative to direct land application. J Clean Prod 96:467–475CrossRefGoogle Scholar
  8. Block C, Van Caneghem J, Van Brecht A, Wauters G, Vandecasteele C (2015) Incineration of hazardous waste: a sustainable process? Waste Biomass Valoriz 6:137–145CrossRefGoogle Scholar
  9. Bosmans A, Vanderreydt I, Geysen D, Helsen L (2013) The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review. J Clean Prod 55:10–23CrossRefGoogle Scholar
  10. Brooks AL, Wang S, Jambeck JR (2018) The Chinese import ban and its impact on global plastic waste trade. Sci Adv 4:eaat0131CrossRefGoogle Scholar
  11. Castaldi M, van Deventer J, Lavoie JM, Legrand J, Nzihou A, Pontikes Y, Py X, Vandecasteele C, Vasudevan PT, Verstraete W (2017) Progress and Prospects in the field of biomass and waste to energy and added-value materials. Waste Biomass Valoriz 8:1875–1884CrossRefGoogle Scholar
  12. Cembureau (2017) Key facts and figures. Accessed Nov 2017
  13. CEPI (2013) CEPI Sustainability Report 2013. European Paper Industry. Advancing the Bioeconomy; Confederation of European Paper Industries (CEPI): Brussels, BelgiumGoogle Scholar
  14. CPCU (2018) District heating network—Production (in French). Accessed Oct 2018
  15. De Greef J, Villani K, Goethals J, Van Belle H, Van Caneghem J, Vandecasteele C (2013) Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants. J Waste Manag 33:2416–2424CrossRefGoogle Scholar
  16. De Greef J, Verbinnen B, Van Caneghem J (2018) Waste-to-energy: coupling waste treatment to highly efficient CHP. J Chem React Technol. Google Scholar
  17. De Groof M, Vandecruys M (2014) Inventarisatie huishoudelijke afvalstoffen 2013. Danny Wille, OVAM, MechelenGoogle Scholar
  18. Decree on soil quality (2007) (in Dutch). Accessed Mar 2018
  19. Delgado-Aguilar M, Tarres Q, Pelach MÀ, Mutje P, Fullana-i-Palmer P (2015) Are cellulose nanofibers a solution for a more circular economy of paper products? Environ Sci Technol 49:12206–12213CrossRefGoogle Scholar
  20. Ecluse (2017) A channel for green energy. Sustainability. Accessed July 2017
  21. European Commission (2015a) Closing the loop—an EU action plan for the Circular Economy. COM(2015) 614. BrusselsGoogle Scholar
  22. European commission (2015b) Directive of the European parliament and of the council amending directive 2008/98/EC on waste. COM(2015) 595 final. BrusselsGoogle Scholar
  23. European Commission (2017) The role of waste-to-energy in the circular economy. COM(2017) 34 final. BrusselsGoogle Scholar
  24. Eurostat (2017). Accessed July 2017
  25. Geens T, Aerts D, Berthotc C, Bourguignond J, Goeyense L, Lecomte P, Maghuin-Rogisterg G, Pironneth A, Pussemieri L (2012a) A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol 50:3725–3740CrossRefGoogle Scholar
  26. Geens T, Goeyens L, Kannan K, Neels H, Covaci A (2012b) Levels of bisphenol-A in thermal paper receipts from Belgium and estimation of human exposure. Sci Total Environ 435–436:30–33CrossRefGoogle Scholar
  27. Goldenman G, Holland M, Lietzmann J, Meura L, Camboni M, Reihlen A, Bakker J (2017) Study for the strategy for a non-toxic environment of the 7th Environment Action Programme. Final Report. Milieu Ltd, BrusselsGoogle Scholar
  28. Grosso M (2016) Sound and advanced municipal waste management: moving from slogans and politics to practice and technique. Waste Manage Res 34:977–979CrossRefGoogle Scholar
  29. Haupt M, Kägi T, Hellweg S (2018) Modular life cycle assessment of municipal solid waste management. Waste Manag 79:815–827CrossRefGoogle Scholar
  30. Hofor (2018) District heating in Copenhagen: Energy-efficient, low-carbon and cost-effective. Accessed Oct 2018
  31. Ignatyev IA, Thielemans W, Vander Beke B (2014) Recycling of polymers: a review. Chemsuschem 7:1579–1593CrossRefGoogle Scholar
  32. Inashco (2018). Accessed Feb 2018
  33. International Monetary Fund (2018) Gross domestic product per capita. Accessed Sept 2018
  34. ISWA (2012) Waste-to-energy state-of-the-art-report 6th edition. Accessed Mar 2018
  35. ISWA (2015) Bottom ash from WtE plants, metal recovery and utilization, Report 2015Google Scholar
  36. ISWA (2018) China’s ban on recyclables, beyond the obvious. Accessed Feb 2018
  37. Jamieson AJ, Malkocs T, Piertney SB, Fujii T, Zhang Z (2017) Bioaccumulation of persistent organic pollutants in the deepest ocean fauna. Nat Ecol Evolut 1, Article number: 0051.
  38. Janz A, Günther M, Bilitewski B (2011) Reaching cost-saving effects by a mixed collection of light packagings together with residual household waste? Waste Manag Res 29:982–990CrossRefGoogle Scholar
  39. Jeswani HK, Azapagic A (2016) Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK. Waste Manag 50:346–363CrossRefGoogle Scholar
  40. Kahle K, Kamuk B, Kallesøe J, Fleck E, Lamers F, Jacobsson L, Sahlén J (2015) Bottom ash from WtE plants—Metal recovery and utilization. ISWA Report. Accessed Mar 2018
  41. Kaza S, Yao L, Bhada-Tata P, Van Woerden F (2018) What a waste 2.0. A global snapshot of solid waste management to 2050. World Bank Group, WashingtonCrossRefGoogle Scholar
  42. Klymko T, Dijkstra JJ, van Zomeren A (2017) Guidance document on hazard classification of MSWI bottom ash. ECN report nr ECN-E–17-024Google Scholar
  43. KplusV (2013) Studie kostprijs en hoeveelheid zwerfvuil in 2013. Danny Wille, OVAM, Mechelen, p 2014Google Scholar
  44. Laurent Alexis, Bakas Ioannis, Clavreul Julie, Bernstad Anna, Niero Monia, Gentil Emmanuel, Hauschild Michael Z, Christensen Thomas H (2014) Review of LCA studies of solid waste management systems—Part I: lessons learned and perspectives. Waste Manag 34:573–588CrossRefGoogle Scholar
  45. Lee SH, Themelis NJ, Castaldi MJ (2007) High-temperature corrosion in Waste-to-Energy boilers. J Therm Spray Technol 16:1–7CrossRefGoogle Scholar
  46. Li QQ, Loganath A, Chong YS, Tan J, Obbard JP (2006) Persistent organic pollutants and adverse health effects in humans. J Toxicol Environ Health Part A 69:1987–2005CrossRefGoogle Scholar
  47. Lombardi L, Carnevale E, Corti A (2015) A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag 37:26–44CrossRefGoogle Scholar
  48. Malinauskaite J, Jouhara H, Czajczynska D, Stanchev P, Katsou E, Rostkowski P, Thorne RJ, Colon J, Ponsa S, Al-Mansour F, Anguilano L, Krzyzynska R, Lopez IC, Vlasopoulos A, Spencer N (2017) Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy 141:2013–2044CrossRefGoogle Scholar
  49. MARTIN plants and technologies (2018) Solutions for the recovery of energy and materials from waste. Last actualized 26 Jan 2018
  50. Merrild Hanna, Larsen Anna W, Christensen Thomas H (2012) Assessing recycling versus incineration of key materials in municipal waste: the importance of efficient energy recovery and transport distances. Waste Manag 32(5):1009–1018CrossRefGoogle Scholar
  51. Pivnenko K, Pedersen GA, Eriksson E, Astrup TF (2015) Bisphenol A and its structural analogues in household waste paper. Waste Manag 44:39–47CrossRefGoogle Scholar
  52. Pivnenko K, Granby K, Eriksson E, Astrup TF (2017) Recycling of plastic waste: screening for brominated flame retardants (BFRs). Waste Manag 69:101–109CrossRefGoogle Scholar
  53. Quicker P, Neuerburg F, Noël Y, Huras A (2014) Sachstand zu den alternativen Verfahren für die thermische Entsorgung von Abfällen. Report Z 6–30 345/18Google Scholar
  54. Rigamonti L, Niero M, Haupt M, Grosso M, Judl J (2018) Recycling processes and quality of secondary materials: food for thought for waste-management-oriented life cycle assessment studies. Waste Manag 76:261–265CrossRefGoogle Scholar
  55. Schlummer M, Gruber L, Mäurer A, Wolz G, van Eldik R (2007) Characterisation of polymer fractions from waste electrical and electronic equipment (WEEE) and implications for waste management. Chemosphere 67:1866–1876CrossRefGoogle Scholar
  56. Schorcht F, Kourti I, Scalet BM, Roudier S, Delgado Sancho L (2013) Best available techniques (BAT) reference document for the production of cement, lime and magnesium oxide. Joint Research Centre of the European Commission, GeelGoogle Scholar
  57. Seltenrich N (2013) Incineration versus recycling: In Europe, a debate over trash. YaleEnvironment360. Published at the Yale School of Forestry & Environmental studies. Accessed Sept 2018
  58. Singh J, Ordonez I (2016) Resource recovery from post-consumer waste: important lessons for the upcoming circular economy. J Clean Prod 134:342–353CrossRefGoogle Scholar
  59. Themelis NJ, Ulloa PA (2007) Methane generation in landfills. Renewable Energy 32:1243–1257CrossRefGoogle Scholar
  60. UNEP (2015) General technical guidelines on the environmentally sound management of wastes of wastes consisting of, containing or contaminated with persistent organic pollutants. UNEP/CHW.12/5/Add.2/Rev.1, GenevaGoogle Scholar
  61. US Environmental Protection Agency (2018) Advancing sustainable materials management: 2015 fact sheet. Accessed Mar 2018
  62. Van Caneghem J, Block C, Van Brecht A, Wauters G, Vandecasteele C (2010a) Mass balance for POPs in hazardous and municipal waste incinerators. Chemosphere 78:701–708CrossRefGoogle Scholar
  63. Van Caneghem J, Block C, Van Brecht A, Van Royen P, Jaspers M, Wauters G, Vandecasteele C (2010b) Mass balance for POPs in a real scale fluidised bed combustor co-incinerating automotive shredder residue. J Hazard Mater 181:827–835CrossRefGoogle Scholar
  64. Van Caneghem J, Brems A, Lievens P, Block C, Billen P, Vermeulen I, Dewil R, Baeyens J, Vandecasteele C (2012) Fluidized bed waste incinerators: design, operational and environmental issues. Prog Energy Combust Sci 38:551–582CrossRefGoogle Scholar
  65. Van Caneghem J, Verbinnen B, Cornelis G, de Wijs J, Mulder R, Billen P, Vandecasteele C (2016) Immobilization of antimony in waste-to-energy bottom ash by addition of calcium and iron containing additives. Waste Manag 54:162–168CrossRefGoogle Scholar
  66. Van Houte P, Paque L (2000) Parlementair onderzoek naar de Belgische vlees-, zuivel-, en eierproductie en naar de verantwoordelijkheid in het licht van de zogenaamde dioxinecrisis – Verslag. Belgische kamer van volksvertegenwoordigers. DOC 50 0018/007Google Scholar
  67. Van Larebeke N, Hens L, Schepens P, Covaci A, Baeyens J, Everaert K, Bernheim JL, Vlietinck R, De Poorter G (1999) The Belgian PCB and dioxin incident of January–June 1999: exposure data and potential impact on health. Environ Health Perspect 109(2001):265–273Google Scholar
  68. Vandecasteele C, Wauters G, Arickx S, Jaspers M, Van Gerven T (2007) Integrated municipal solid waste treatment using a grate furnace incinerator: the Indaver case. Waste Manag 27:1366–1375CrossRefGoogle Scholar
  69. Vehlow J, Bergfeldt B, Jay J, Seifert H, Wanke T (2000) Thermal treatment of electrical and electronic waste plastics. Waste Manage Res 18:131–140CrossRefGoogle Scholar
  70. Verbinnen B, Billen P, Van Caneghem J, Vandecasteele C (2017) Recycling of MSWI bottom ash: a review of chemical barriers, engineering applications and treatment technologies. Waste Biomass Valoriz 8:1453–1466CrossRefGoogle Scholar
  71. Vermeulen I, Van Caneghem J, Block C, Vandecasteele C (2014) Indication of PCDD/F formation through heterogeneous precursor condensation in a full scale hazardous waste incinerator. J Mater Cycles Waste Manage 16:167–171CrossRefGoogle Scholar
  72. Vervaet M, Andries A, Van Hasselt D, Smeets K (2016) Inventorisation of domestic waste (in Dutch). Ovam. Accessed Jan 2018
  73. Vieira Cubas AL, de Medeiros Machado M, de Medeiros Machado M, Gross F, Faverzani Magnago R, Siegel Moecke EH, Goncalvez de Souza I (2014) Inertization of heavy metals present in galvanic sludge by DC thermal plasma. Environ Sci Technol 48:2853–2861CrossRefGoogle Scholar
  74. Wang HC, Hwang JF, Chi KH, Chang MB (2007) Formation and removal of PCDD/Fs in a municipal waste incinerator during different operating periods. Chemosphere 67:S177–S184CrossRefGoogle Scholar
  75. Wien Energie (2018) How it works: Green heating—District heating. Accessed Oct 2018
  76. Wilts H, Galinski L, Marin G, Paleari S, Zoboli R (2017) Assessment of waste incineration capacity and waste shipments in Europe. European Topic Centre on Waste and Materials in a Green EconomyGoogle Scholar
  77. ZAR (2018) Ziftung Zentrum für nachhaltige Abfall- und Ressourcennutzung. Trockenaustrag in der KEZO, Hinwil. Accessed Sept 2018
  78. Zennegg M, Schluep M, Streicher-Porte M, Lienemann P, Haag R, Gerecke AC (2014) Formation of PBDD/F from PBDE in electronic waste in recycling processes and under simulated extruding conditions. Chemosphere 116:34–39CrossRefGoogle Scholar
  79. Zhang D, Huang G, Xu H, Gong Q (2015) Waste-to-Energy in China: key Challenges and Opportunities. Energies 8:14182–14196CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.TC Materials Technology, Group T Leuven CampusKU LeuvenLeuvenBelgium
  2. 2.Department of Materials EngineeringKU LeuvenLeuvenBelgium
  3. 3.DEG BvbaGrimbergenBelgium
  4. 4.Indaver NVKalloBelgium
  5. 5.Department of Chemical EngineeringKU LeuvenLeuvenBelgium

Personalised recommendations