Clean Technologies and Environmental Policy

, Volume 21, Issue 1, pp 179–199 | Cite as

Evaluation of riverbank filtration in the removal of pesticides: an approximation using column experiments and contaminant transport modeling

  • Marcela JaramilloEmail author
  • Thomas Grischek
  • Hilmar Boernick
  • Jaime I. Velez
Original Paper


The potential of riverbank filtration in the removal of five pesticides commonly used in Colombia (atrazine, ametryn, carbofuran, diuron and propanil) was evaluated through a series of column experiments and solute transport modeling. The experiments consisted of two soil columns run under saturated regime, with sediments and water collected from the rivers Loessnitztal and Elbe (East Germany), respectively. Six experiments were performed at 10 and 20 °C, and the final concentrations of the pesticides were used to solve the one-dimensional advection–dispersion equation using an inverse approach. Variables such as retardation factor, first-order degradation coefficient, and dispersion coefficient were assessed for all the pesticides except propanil, which rapidly degraded in solution. The parameters obtained for one of the experiments were introduced into a groundwater flow model from the Loessnitztal site, and the code MT3DMS was used to simulate a contaminant pulse coming from the river. Four different scenarios were considered to determine the effect of adsorption and degradation on the fate of the pesticides. The results showed that, although the persistence of pesticides depends on the properties of each compound, a maximum of 30% removal was achieved during the column experiments, and a log removal of 9 through the numerical modeling. Because of the sensitivity of the fate of contaminants to sorption and degradation, field and laboratory work should be carried on to determine the removal coefficient of the dissolved and adsorbed phases of the compounds, the type of degradation to be expected, and the real values of longitudinal and transverse dispersivity.

Graphical Abstract


Riverbank filtration Pesticide removal Solute transport Numerical modeling Column experiment 



The authors thank the water company ZWA Hainichen for the field work support at the riverbank filtration site Loessnitztal in East Germany.


  1. Agertved J, Rugge K, Barker JF (1993) Transformation of the herbicides MCPP and Atrazine under natural aquifer conditions. Groundwater 30(4):500–506CrossRefGoogle Scholar
  2. ASTM (2006) Standard practice for classification of soils for engineering purposes (unified soil classification system). Designation: D 2487-06. ASTM International, p 12Google Scholar
  3. Baluch HU, Somasundaram L, Kanwar RS, Coats JR (1993) Fate of major degradation products of atrazine in Iowa soils. J Environ Sci Health B28(2):127–149CrossRefGoogle Scholar
  4. Benotti MJ, Song RG, Wilson D, Snyder SA (2012) Removal of pharmaceuticals and endocrine disrupting compounds through pilot- and full-scale riverbank filtration. Water Sci Technol Water Supply 12(1):11–23CrossRefGoogle Scholar
  5. Bertelkamp C, Reungoat J, Cornelissen ER, Singhal N, Reynisson J, Cabo AJ, van der Hoek JP, Verliefde ARD (2014) Sorption and biodegradation of organic micropollutants during river bank filtration: a laboratory column study. Water Res 52:231–241CrossRefGoogle Scholar
  6. Bertelkamp C, Verliefde ARD, Schoutteten K, Vanhaecke L, Vanden Bussche J, Singhal N, van der Hoek JP (2016) The effect of redox conditions and adaptation time on organic micropollutant removal during river bank filtration: a laboratory-scale column study. Sci Total Environ 544:309–318CrossRefGoogle Scholar
  7. Buchanan I, Liang HC, Liu Z, Razaviarani V, Rahman MdZ (2010) Pesticides and herbicides. Water Environ Res 82(10):1594–1693CrossRefGoogle Scholar
  8. Chiang W-H (2005) 3D-groundwater modeling with PMWIN: a simulation system for modeling groundwater flow and transport processes, 2nd edn. Springer, Berlin, p 414Google Scholar
  9. Chiang W-H, Kinzelbach W (1994) PMPATH :an advective transport model for processing modflow and modflow. Geol Surv Hambg, GermanyGoogle Scholar
  10. Chiang W-H, Kinzelbach W (1998) Processing modflow: a simulation system for modeling groundwater flow and pollution. User’s guide, p 334Google Scholar
  11. Defensoria del Pueblo (2010) Diagnóstico de la calidad de agua para consumo humano año 2009, p 66Google Scholar
  12. Defensoría del Pueblo (2007) Tercer diagnóstico sobre calidad de agua para consumo humano, p 168Google Scholar
  13. DIN (2011) DIN 18123:2011-04-Baugrund, Untersuchung von Bodenproben-Bestimmung der Korngrößenverteilung (grain size distribution). Deutsches Institute fur NormungGoogle Scholar
  14. Doussan C, Poitevin G, Ledoux E, Detay M (1997) River bank filtration: modelling of the changes in water chemistry with emphasis in nitrogen species. J Contam Hydrogeol 25:129–156CrossRefGoogle Scholar
  15. HTW Dresden (2012) Uferfiltration im Lößnitztal - Modellierung der Grundwasserströmung (Bank filtration at Loessnitztal: groundwater flow modeling). University of Applied Sciences Dresden, unpublished report, p 27Google Scholar
  16. Eckhard W (1999) Laboratory tests for simulation of riverbank filtration processes. In: Abstracts international riverbank filtration conference, Louisville (Kentucky), November 4th–6th 1999, p 11Google Scholar
  17. Fetter CW (1999) Contaminant hydrogeology, 2nd edn. Prentice Hall, Englewook Cliffs, p 500Google Scholar
  18. Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewook Cliffs, p 604Google Scholar
  19. Fried JJ (1975) Groundwater pollution. Elsevier, Amsterdam, p 329Google Scholar
  20. Hiscock KM, Grischek T (2002) Attenuation of groundwater pollution by bank filtration. J Hydrol 266(3–4):139–144CrossRefGoogle Scholar
  21. IAvH, IDEAM, IIAP, INVEMAR, SINCHI (2011) Informe del Estado del Medio Ambiente y de los Recursos Naturales Renovables 2010. Instituto de Hidrología, Meteorología y Estudios Ambientales–IDEAM, Bogotá, p 384Google Scholar
  22. ICA (2011) Estadísticas de comercialización de plaguicidas químicos de uso agrícola 2010. Instituto Colombiano Agropecuario, Bogotá, p 96Google Scholar
  23. ICA (2016) Estadísticas de comercialización de plaguicidas químicos de uso agrícola 2015. Instituto Colombiano Agropecuario, Bogotá, p 128Google Scholar
  24. IDEAM (2010) Estudio Nacional del Agua 2010. Instituto de Hidrología, Meteorología y Estudios Ambientales, Bogotá, p 420Google Scholar
  25. IDEAM (2015) Estudio Nacional del Agua 2014. Instituto de Hidrología, Meteorología y Estudios Ambientales, Bogotá, p 493Google Scholar
  26. Jaramillo M (2012) Riverbank filtration: an efficient and economical drinking-water treatment technology. Dyna 171:148–157Google Scholar
  27. Jekel M, Grischek T (2003) Riverbank filtration: the European experience. In: Melin G (ed) Riverbank filtration: the future is now. Program and abstracts of the 2nd international Riverbank Filtration conference, Cincinnati, Ohio, USA. September 16th–19th, 2003Google Scholar
  28. Kuehn W, Mueller U (2000) Riverbank filtration: an overview. J Am Water Works Assoc (AWWA) 92(12):60–69CrossRefGoogle Scholar
  29. Kuster M, Díaz-Cruz S, Rosell M, López de Alda M, Barceló D (2010) Fate of selected pesticides, estrogens, progestogens and volatile organic compounds during artificial aquifer recharge using surface waters. Chemosphere 79:880–886CrossRefGoogle Scholar
  30. Lallemand-Barres P, Peaudecerf P (1978) Recherche des relations entre la veleur de la dispersivite macroscopique d’un milieu aquifere, ses autres caracteristiques et les conditions de mesure, etude bibliographique. Bulletin, Bureau de Recherches Geologiques et Miniéres, Sec. 3/4:277–287Google Scholar
  31. Lewis J, Sjöstrom J (2010) Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments. J Contam Hydrol 115:1–13CrossRefGoogle Scholar
  32. Mao M, Ren L (2005) Simulating nonequilibrium transport of Atrazine through saturated soil. Groundwater 42(4):500–508CrossRefGoogle Scholar
  33. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 2:431–441CrossRefGoogle Scholar
  34. McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. U.S. Geological Survey, Techniques of water-resources investigations, book 6, chapter A1, p 586Google Scholar
  35. Neuman SP (1990) Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour Res 26(8):1749–1758CrossRefGoogle Scholar
  36. Ormad MP, Miguel N, Claver J, Matesanz JM, Ovelleiro JL (2008) Pesticides removal in the process of drinking water production. Chemosphere 71:97–106CrossRefGoogle Scholar
  37. Pang L, Close ME (1999) Attenuation and transport of atrazine and picloram in an alluvial gravel aquifer: a tracer test and batch study. NZ J Mar Freshw Res 33(2):279–291CrossRefGoogle Scholar
  38. Paraiba LC, Spadotto CA (2002) Soil temperature effect in calculating attenuation and retardation factors. Chemosphere 48:905–912CrossRefGoogle Scholar
  39. Perkins TK, Johnson OC (1963) A review of diffusion and dispersion in porous media. Soc Petrol Eng J 3:70–84CrossRefGoogle Scholar
  40. Rashid B, Husnain T, Riazuddin S (2010) Herbicides and pesticides as potential pollutants: a global problem. In: Ashraf M et al (eds) Plant adaptation and phytoremediation. Springer, Berlin, pp 427–447CrossRefGoogle Scholar
  41. Ray C, Soong TWD, Roadcap GS, Borah DK (1998) Agricultural chemicals: effects on wells during floods. J Am Water Work Assoc 90:90–100CrossRefGoogle Scholar
  42. Ray C, Soong TW, Lian YQ, Roadcap GS (2002) Effect of flood-induced chemical load on filtrate quality at bank filtration sites. J Hydrol 266:235–258CrossRefGoogle Scholar
  43. Romero LG, Pizzolati BS, Soares MBD, Michelan DCGS, Sens ML (2010) Bank filtration: application in rural areas. Case studies in Santa Catarina, Brazil. In: Conference proceedings on 21st century watershed technology: improving water quality and environmentGoogle Scholar
  44. SAN (2011) List of prohibited pesticides. Sustainable agriculture network, p 8Google Scholar
  45. Sánchez-Pérez JM, Montuelle B, Mouchet F, Gauthier L, Julien F, Sauvage S, Teissier S, Dedieu K, Destrieux D, Vervier P, Gerino M (2013) Role of the hyporheic heterotrophic biofilm on transformation and toxicity of pesticides. Ann Limnol Int J Lim 49:87–95CrossRefGoogle Scholar
  46. Schaffner C, Ahel M, Giger W (1987) Field studies on the behaviour of organic micropollutants during infiltration of river water to groundwater. Water Sci Technol 19:1195–1196CrossRefGoogle Scholar
  47. Scribner EA, Thurman EM, Zimmerman LR (2000) Analysis of selected metabolites in surface and ground water in the United States. Sci Total Environ 248:157–167CrossRefGoogle Scholar
  48. Simunek J, van Genuchten MTh, Sejna M, Toride N, Leij FJ (1999) The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Versions 1.0 and 2.0, IGWMC-TPS-71. International Ground Water Modeling Center, Colorado School of Mines, Golden, Colorado, p 32Google Scholar
  49. Sinclair CJ, Boxall ABA (2003) Assessing the ecotoxicity of pesticide transformation products. Environ Sci Technol 37(20):4617–4625CrossRefGoogle Scholar
  50. Son BT (2010) Role of riverbank filtration in the attenuation of herbicides. Ph.D. Dissertation, School of Environmental Sciences, University of East Anglia, p 255Google Scholar
  51. Toride N, Leij FJ, van Genuchten MTh (1995) The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments, version 2.0, research report no. 137. U. S. Salinity Laboratory, USDA, ARS, Riverside, CA, p 131Google Scholar
  52. Tufenkji N, Ryan JN, Elimelech M (2002) The promise of bank filtration. Environ Sci Technol 1:423–428Google Scholar
  53. University of Hertfordshire’s PPDB (pesticide properties database). Cited 3 Aug 2014
  54. U.S. National Library of Medicine’s TOXNET system. Cited 15 Nov 2014
  55. Verstraeten IM, Heberer T (2002) Organic chemical removal issues. In: Ray C, Melin G, Linsky R (eds) Riverbank filtration improving source-water quality, vol 43. Springer, Berlin, pp 321–330CrossRefGoogle Scholar
  56. Verstraeten IM, Carr JD, Steele GV, Thurman EM, Dormedy DF (1999) Surface-water/ground-water interaction: herbicide transport into municipal collector wells. J Environ Qual 28(5):1396–1405CrossRefGoogle Scholar
  57. Verstraeten IM, Heberer T, Scheytt T (2002a) Occurrence, characteristics, transport, and fate of pesticides, pharmaceuticals, industrial products, and personal care products at riverbank filtration sites. In: Ray C, Melin G, Linsky R (eds) Riverbank filtration improving source-water quality, vol 43. Springer, Berlin, pp 175–227CrossRefGoogle Scholar
  58. Verstraeten IM, Thurman EM, Lindsey ME, Lee EC, Smith RE (2002b) Changes in concentrations of triazine and acetamide herbicides by bank filtration, ozonation, and chlorination in a public water supply. J Hydrol 266:190–208CrossRefGoogle Scholar
  59. Xu M, Eckstein Y (1995) Use of weighted least-squares method in evaluation of the relationship between dispersivity and field scale. Ground Water 16(6):905–908CrossRefGoogle Scholar
  60. Zheng C, Wang P (1999) MT3DMS A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems: documentation and user’s guide. US Army Corps of Engineers, Washington, DC, p 239Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth Sciences, Faculty of ScienceEAFIT UniversityMedellinColombia
  2. 2.Faculty of Civil Engineering and ArchitectureUniversity of Applied Sciences Dresden (HTW Dresden)DresdenGermany
  3. 3.Institute for Water ChemistryTechnische Universität Dresden (TU-Dresden)DresdenGermany
  4. 4.Faculty of Mines, School of Geosciences and EnvironmentNational University of ColombiaMedellinColombia

Personalised recommendations