Advertisement

Preparation and characterization of green polylactic acid (PLA) membranes for organic/organic separation by pervaporation

  • Francesco Galiano
  • Abdulsattar H. Ghanim
  • Khalid T. Rashid
  • Tiziana Marino
  • Silvia Simone
  • Qusay F. Alsalhy
  • Alberto Figoli
Original Paper

Abstract

Membrane science, in the context of the growing attention towards the preservation and protection of the environment, has an emerging role as a very well-recognised eco-friendly technology. In order to meet the complete concept of sustainability, however, greener strategies still need to be put in place regarding the preparation of the membranes. Polylactic acid (PLA) green flat sheet membranes were prepared using ethyl lactate as a green solvent and water as a non-solvent, for the first time. The morphology, thickness, contact angle, mechanical properties, FTIR and degree of swelling were determined for studying the properties of the produced membranes. A systematic study was performed testing PLA membranes in pervaporation (PV) for the separation of methanol (MeOH)/methyl tert-butyl ether (MTBE) azeotropic mixture evaluating their performance by varying feed temperature and vacuum degree. The findings revealed that the membrane morphology changed from finger-like to spongy-like and finally to dense-like structure by acting on the evaporation time (ET) during the preparation with an improvement in the overall mechanical properties. The PLA dense membrane produced with an ET of 7 min was successfully tested in PV exhibiting a preferred permeation towards MeOH with a highest selectivity value of more than 75. An Arrhenius-type dependence between flux and temperature was found.

Graphical Abstract

Keywords

Pervaporation Polylactic acid (PLA) Phase inversion MEOH/MTBE separation Green membranes Biopolymers 

Supplementary material

10098_2018_1621_MOESM1_ESM.docx (671 kb)
Supplementary material 1 (DOCX 670 kb)

References

  1. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New YorkGoogle Scholar
  2. Castro-Muñoz R, Galiano F, Fíla V et al (2018a) Mixed matrix membranes (MMMs) for ethanol purification through pervaporation: current state of the art. Rev Chem Eng.  https://doi.org/10.1515/revce-2017-0115 CrossRefGoogle Scholar
  3. Castro-Muñoz R, Galiano F, Fíla V et al (2018b) Matrimid®5218 dense membrane for the separation of azeotropic MeOH-MTBE mixtures by pervaporation. Sep Purif Technol 199:27–36.  https://doi.org/10.1016/j.seppur.2018.01.045 CrossRefGoogle Scholar
  4. Cui Z, Hassankiadeh NT, Lee SY et al (2015) Tailoring novel fibrillar morphologies in poly(vinylidene fluoride) membranes using a low toxic triethylene glycol diacetate (TEGDA) diluent. J Memb Sci 473:128–136.  https://doi.org/10.1016/j.memsci.2014.09.019 CrossRefGoogle Scholar
  5. Duggal A, Thompson EV (1986) Dependence of diffusive permeation rates and selectivities on upstream and downstream pressures. VI. Experimental results for the water/ethanol system. J Memb Sci 27:13–30.  https://doi.org/10.1016/S0376-7388(00)81379-4 CrossRefGoogle Scholar
  6. Falbo F, Santoro S, Galiano F et al (2016) Organic/organic mixture separation by using novel ECTFE polymeric pervaporation membranes. Polymer (United Kingdom) 98:110–117.  https://doi.org/10.1016/j.polymer.2016.06.023 CrossRefGoogle Scholar
  7. Figoli A, Marino T, Simone S et al (2014) Towards non-toxic solvents for membrane preparation: a review. Green Chem 16:4034.  https://doi.org/10.1039/C4GC00613E CrossRefGoogle Scholar
  8. Gao A, Liu F, Xue L (2014) Preparation and evaluation of heparin-immobilized poly (lactic acid) (PLA) membrane for hemodialysis. J Memb Sci 452:390–399.  https://doi.org/10.1016/j.memsci.2013.10.016 CrossRefGoogle Scholar
  9. Han GL, Gong Y, Zhang QG, Lin Q (2013) Polyarylethersulfone with cardo/poly (vinyl pyrrolidone) blend membrane for pervaporation of methanol/methyl tert-butyl ether mixtures. J Memb Sci 448:55–61.  https://doi.org/10.1016/j.memsci.2013.07.060 CrossRefGoogle Scholar
  10. Hassankiadeh NT, Cui Z, Kim JH et al (2014) PVDF hollow fiber membranes prepared from green diluent via thermally induced phase separation: effect of PVDF molecular weight. J Memb Sci 471:237–246.  https://doi.org/10.1016/j.memsci.2014.07.060 CrossRefGoogle Scholar
  11. Hassankiadeh NT, Cui Z, Kim JH et al (2015) Microporous poly(vinylidene fluoride) hollow fiber membranes fabricated with PolarClean as water-soluble green diluent and additives. J Memb Sci 479:204–212.  https://doi.org/10.1016/j.memsci.2015.01.031 CrossRefGoogle Scholar
  12. Hilmioglu ND, Tulbentci S (2004) Pervaporation of MTBE/methanol mixtures through PVA membranes. Chem Eng 160:263–270.  https://doi.org/10.1016/S0011-9164(04)90028-8 CrossRefGoogle Scholar
  13. Iulianelli A, Algieri C, Donato L et al (2017) New PEEK-WC and PLA membranes for H2 separation. Int J Hydrog Energy.  https://doi.org/10.1016/j.ijhydene.2017.04.060 CrossRefGoogle Scholar
  14. Jamshidian M, Tehrany EA, Imran M et al (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571.  https://doi.org/10.1111/j.1541-4337.2010.00126.x CrossRefGoogle Scholar
  15. Jiang LY, Wang Y, Chung TS et al (2009) Polyimides membranes for pervaporation and biofuels separation. Prog Polym Sci 34:1135–1160.  https://doi.org/10.1016/j.progpolymsci.2009.06.001 CrossRefGoogle Scholar
  16. Jung JT, Kim JF, Wang HH et al (2016) Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J Memb Sci 514:250–263.  https://doi.org/10.1016/j.memsci.2016.04.069 CrossRefGoogle Scholar
  17. Jyoti G, Keshav A, Anandkumar J (2015) Review on pervaporation: theory, membrane performance, and application to intensification of esterification reaction. J Eng (United States).  https://doi.org/10.1155/2015/927068 CrossRefGoogle Scholar
  18. Li W, Galiano F, Estager J et al (2018) Sorption and pervaporation study of methanol/dimethyl carbonate mixture with poly(etheretherketone) (PEEK-WC) membrane. J Memb Sci.  https://doi.org/10.1016/j.memsci.2018.09.040 CrossRefGoogle Scholar
  19. Ma X, Hu C, Guo R et al (2008) HZSM5-filled cellulose acetate membranes for pervaporation separation of methanol/MTBE mixtures. Sep Purif Technol 59:34–42.  https://doi.org/10.1016/j.seppur.2007.05.023 CrossRefGoogle Scholar
  20. Madaeni SS, Pourghorbani R, Vatanpour V (2012) Investigation of parameters affecting the flux of microfiltration poly(vinylidenefluoride) membranes for particulate removal. Adv Polym Technol 31:29–40.  https://doi.org/10.1002/adv.20232 CrossRefGoogle Scholar
  21. Marino T, Blefari S, Di Nicolò E, Figoli A (2017a) A more sustainable membrane preparation using triethyl phosphate as solvent. Green Process Synth 6:295–300.  https://doi.org/10.1515/gps-2016-0165 CrossRefGoogle Scholar
  22. Marino T, Russo F, Criscuoli A, Figoli A (2017b) TamiSolve® NxG as novel solvent for polymeric membrane preparation. J Memb Sci 542:418–429.  https://doi.org/10.1016/j.memsci.2017.08.038 CrossRefGoogle Scholar
  23. Marino T, Blasi E, Tornaghi S et al (2018) Polyethersulfone membranes prepared with Rhodiasolv®Polarclean as water soluble green solvent. J Memb Sci 549:192–204.  https://doi.org/10.1016/j.memsci.2017.12.007 CrossRefGoogle Scholar
  24. Nam SY, Lee YM (1999) Pervaporation separation of methanol/methyl t-butyl ether through chitosan composite membrane modified with surfactants. J Memb Sci 157:63–71CrossRefGoogle Scholar
  25. Niang M, Luo G (2001) A triacetate cellulose membrane for the separation of methyl tert-butyl ether/methanol mixtures by pervaporation. Sep Purif Technol 24:427–435CrossRefGoogle Scholar
  26. Niang M, Luo G, Schaetzel P (1996) Pervaporation separation of methyl tert-butyl ether/methanol mixtures using a high-performance blended. J Appl Polym Sci 64:875–882CrossRefGoogle Scholar
  27. Nikles SM, Piao M, Lane AM, Nikles DE (2001) Ethyl lactate: a green solvent for magnetic tape coating. Green Chem 3:109–113.  https://doi.org/10.1039/b101147m CrossRefGoogle Scholar
  28. Nova-Institute (2015) European Bioplastics, Institute for Bioplastics and Biocomposites. www.bio-based.eu
  29. Paulsen FG, Shojaie SS, Krantz WB (1994) Effect of evaporation step on macrovoid formation in wet-cast polymeric membranes. J Memb Sci 91:265–282.  https://doi.org/10.1016/0376-7388(94)80088-X CrossRefGoogle Scholar
  30. Peivasti M, Madandar A, Mohammadi T (2008) Effect of operating conditions on pervaporation of methanol/methyl tert-butyl ether mixtures. Chem Eng Process Process Intensif 47:1069–1074.  https://doi.org/10.1016/j.cep.2007.08.005 CrossRefGoogle Scholar
  31. Pereira CSM, Silva VMTM, Rodrigues AE (2011) Ethyl lactate as a solvent: properties, applications and production processes—a review. Green Chem 13:2658.  https://doi.org/10.1039/c1gc15523g CrossRefGoogle Scholar
  32. Sawada S, Ursino C, Galiano F et al (2015) Effect of citrate-based non-toxic solvents on poly(vinylidene fluoride) membrane preparation via thermally induced phase separation. J Memb Sci 493:232–242.  https://doi.org/10.1016/j.memsci.2015.07.003 CrossRefGoogle Scholar
  33. Strathmann H, Scheible P, Baker RW (1971) A rationale for the preparation of Loeb–Sourirajan-type cellulose acetate membranes. J Appl Polym Sci 15:811–828.  https://doi.org/10.1002/app.1971.070150404 CrossRefGoogle Scholar
  34. Wang Y, Yang L, Luo G, Dai Y (2009) Preparation of cellulose acetate membrane filled with metal oxide particles for the pervaporation separation of methanol/methyl tert-butyl ether mixtures. Chem Eng J 146:6–10.  https://doi.org/10.1016/j.cej.2008.05.009 CrossRefGoogle Scholar
  35. Wang L, Wang N, Yang H et al (2018) Facile fabrication of mixed matrix membranes from simultaneously polymerized hyperbranched polymer/modified graphene oxide for MTBE/MeOH separation. J Memb Sci.  https://doi.org/10.1016/j.memsci.2018.04.051 CrossRefGoogle Scholar
  36. Winterberg M, Schulte-Korne E, Peters U (2010) Methyl tert-butyl ether. In: Ullmann's encyclopedia of industrial chemistry. Wiley, Weinheim, pp. 413–454Google Scholar
  37. Wu H, Fang X, Zhang X et al (2008) Cellulose acetate-poly(N-vinyl-2-pyrrolidone) blend membrane for pervaporation separation of methanol/MTBE mixtures. Sep Purif Technol 64:183–191.  https://doi.org/10.1016/j.seppur.2008.09.013 CrossRefGoogle Scholar
  38. Xie Z, Ng D, Hoang M et al (2011) Separation of aqueous salt solution by pervaporation through hybrid organic-inorganic membrane: effect of operating conditions. Desalination 273:220–225.  https://doi.org/10.1016/j.desal.2010.10.026 CrossRefGoogle Scholar
  39. Yahaya GO (2008) Separation of volatile organic compounds (BTEX) from aqueous solutions by a composite organophilic hollow fiber membrane-based pervaporation process. J Memb Sci 319:82–90.  https://doi.org/10.1016/j.memsci.2008.03.024 CrossRefGoogle Scholar
  40. Zereshki S, Figoli A, Madaeni SS et al (2010a) Pervaporation separation of methanol/methyl tert-butyl ether with poly(lactic acid) membranes. J Appl Polym Sci 118:1364–1371.  https://doi.org/10.1002/app.32340 CrossRefGoogle Scholar
  41. Zereshki S, Figoli A, Madaeni SS et al (2010b) Poly(lactic acid)/poly(vinyl pyrrolidone) blend membranes: effect of membrane composition on pervaporation separation of ethanol/cyclohexane mixture. J Memb Sci 362:105–112.  https://doi.org/10.1016/j.memsci.2010.06.025 CrossRefGoogle Scholar
  42. Zereshki S, Figoli A, Madaeni SS et al (2011a) Pervaporation separation of ethanol/ETBE mixture using poly(lactic acid)/poly(vinyl pyrrolidone) blend membranes. J Memb Sci 373:29–35.  https://doi.org/10.1016/j.memsci.2011.02.031 CrossRefGoogle Scholar
  43. Zereshki S, Figoli A, Madaeni SS et al (2011b) Pervaporation separation of MeOH/MTBE mixtures with modified PEEK membrane: effect of operating conditions. J Memb Sci 371:1–9.  https://doi.org/10.1016/j.memsci.2010.11.068 CrossRefGoogle Scholar
  44. Zhou H, Su Y, Chen X, Wan Y (2011) Separation of acetone, butanol and ethanol (ABE) from dilute aqueous solutions by silicalite-1/PDMS hybrid pervaporation membranes. Sep Purif Technol 79:375–384.  https://doi.org/10.1016/j.seppur.2011.03.026 CrossRefGoogle Scholar
  45. Zhou K, Zhang QG, Han GL et al (2013) Pervaporation of water–ethanol and methanol–MTBE mixtures using poly (vinyl alcohol)/cellulose acetate blended membranes. J Memb Sci 448:93–101.  https://doi.org/10.1016/j.memsci.2013.08.005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute on Membrane Technology, ITM-CNRRendeItaly
  2. 2.Membrane Technology Research Unit, Chemical Engineering DepartmentUniversity of TechnologyBaghdadIraq

Personalised recommendations