Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Tuberculosis vaccine development: from classic to clinical candidates

  • 22 Accesses

Abstract

Bacillus Calmette-Guérin (BCG) has been in use for nearly 100 years and is the only licensed TB vaccine. While BCG provides protection against disseminated TB in infants, its protection against adult pulmonary tuberculosis (PTB) is variable. To achieve the ambitious goal of eradicating TB worldwide by 2050, there is an urgent need to develop novel TB vaccines. Currently, there are more than a dozen novel TB vaccines including prophylactic and therapeutic at different stages of clinical research. This literature review provides an overview of the clinical status of candidate TB vaccines and discusses the challenges and future development trends of novel TB vaccine research in combination with the efficacy of evaluation of TB vaccines, provides insight for the development of safer and more efficient vaccines, and may inspire new ideas for the prevention of TB.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Correa-Macedo W et al (2019) The interplay of human and Mycobacterium tuberculosis Genomic Variability. Front Genet 18(10):865

  2. 2.

    Mustafa AS (2005) Mycobacterial gene cloning and expression, comparative genomics, bioinformatics and proteomics in relation to the development of new vaccines and diagnostic reagents. Med Princ Pract 14(Suppl 1):27–34

  3. 3.

    Hershkovitz I et al (2015) Tuberculosis origin: the Neolithic scenario. Tuberculosis (Edinb) 95(Suppl 1):S122–S126

  4. 4.

    World Health Organization (2019) Global tuberculosis report 2019. WHO, Geneva

  5. 5.

    World Health Organization (1994) TB: a global emergency, WHO report on the TB epidemic (WHO/TB/94.177). WHO, Geneva

  6. 6.

    Styblo K, Meijer J, Sutherland I (1969) The transmission of tubercle bacilli: its trend in a human population. Bull World Health Organ 41(1):137–178

  7. 7.

    D'Arcy Hart P (2001) Historical declines in tuberculosis: nature, nurture and the biosocial model. Int J Tuberc Lung Dis 5(9):879

  8. 8.

    Pai M et al (2016) Tuberculosis. Nat Rev Dis Primers 2:16076

  9. 9.

    Schorey JS, Schlesinger LS., Innate Immune Responses to Tuberculosis. Microbiol Spectr, 2016 Dec; 4(6). https://doi.org/10.1128/microbiolspec.TBTB2-0010-2016

  10. 10.

    DeWeerdt S (2013) Vaccines: an age-old problem. Nature 502(7470):S8–S9

  11. 11.

    Calmette A (1931) Preventive vaccination against tuberculosis with BCG. Proc R Soc Med 24(11):1481–1490

  12. 12.

    Brosch R et al (2007) Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci U S A 104(13):5596–5601

  13. 13.

    Favorov M et al (2012) Comparative tuberculosis (TB) prevention effectiveness in children of Bacillus Calmette-Guerin (BCG) vaccines from different sources Kazakhstan. PLoS One 7(3):e32567

  14. 14.

    Mostowy S et al (2003) The in vitro evolution of BCG vaccines. Vaccine 21(27–30):4270–4274

  15. 15.

    Trunz BB, Fine P, Dye C (2006) Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 367(9517):1173–1180

  16. 16.

    Blok BA et al (2015) Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J Leukoc Biol 98(3):347–356

  17. 17.

    Roth A et al (2006) Bacillus Calmette-Guerin vaccination and infant mortality. Expert Rev Vaccines 5(2):277–293

  18. 18.

    Andersen P, Kaufmann SH., Novel vaccination strategies against tuberculosis.Cold Spring Harb Perspect Med. 2014 Jun 2;4(6). pii: a018523. https://doi.org/10.1101/cshperspect.a018523

  19. 19.

    Rodrigues LC, Mangtani P, Abubakar I (2011) How does the level of BCG vaccine protection against tuberculosis fall over time? BMJ 343:d5974

  20. 20.

    Mangtani P et al (2014) Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis 58(4):470–480

  21. 21.

    Abubakar I et al (2013) Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette-Guerin vaccination against tuberculosis. Health Technol Assess 17(37):1–372 v-vi

  22. 22.

    Andersen P, Doherty TM (2005) The success and failure of BCG - implications for a novel tuberculosis vaccine. Nat Rev Microbiol 3(8):656–662

  23. 23.

    Colditz GA et al (1994) Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA 271(9):698–702

  24. 24.

    Fine PE (1995) Variation in protection by BCG: implications of and for heterologous immunity. Lancet 346(8986):1339–1345

  25. 25.

    Colditz GA et al (1995) The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: meta-analyses of the published literature. Pediatrics 96(1 Pt 1):29–35

  26. 26.

    Gallant CJ et al (2010) Impact of age and sex on mycobacterial immunity in an area of high tuberculosis incidence. Int J Tuberc Lung Dis 14(8):952–959

  27. 27.

    Trial of BCG vaccines in south India for tuberculosis prevention (1979) first report--Tuberculosis Prevention Trial. Bull World Health Organ 57(5):819–827

  28. 28.

    Bulletin of the World Health Organization (1979) Trial of BCG vaccines in south India for tuberculosis prevention: first report. WHO, Geneva

  29. 29.

    Harris DP et al (2005) Regulation of IFN-gamma production by B effector 1 cells: essential roles for T-bet and the IFN-gamma receptor. J Immunol 174(11):6781–6790

  30. 30.

    Wagner M et al (2004) IL-12p70-dependent Th1 induction by human B cells requires combined activation with CD40 ligand and CpG DNA. J Immunol 172(2):954–963

  31. 31.

    Wang J et al (2004) Single mucosal, but not parenteral, immunization with recombinant adenoviral-based vaccine provides potent protection from pulmonary tuberculosis. J Immunol 173(10):6357–6365

  32. 32.

    Vordermeier HM et al (2009) Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis. Infect Immun 77(8):3364–3373

  33. 33.

    Dean G et al (2014) Comparison of the immunogenicity and protection against bovine tuberculosis following immunization by BCG-priming and boosting with adenovirus or protein based vaccines. Vaccine 32(11):1304–1310

  34. 34.

    Metcalfe HJ et al (2018) Ag85A-specific CD4+ T cell lines derived after boosting BCG-vaccinated cattle with Ad5-85A possess both mycobacterial growth inhibition and anti-inflammatory properties. Vaccine 36(20):2850–2854

  35. 35.

    Santosuosso M et al (2006) Intranasal boosting with an adenovirus-vectored vaccine markedly enhances protection by parenteral Mycobacterium bovis BCG immunization against pulmonary tuberculosis. Infect Immun 74(8):4634–4643

  36. 36.

    Smaill F, Xing Z (2014) Human type 5 adenovirus-based tuberculosis vaccine: is the respiratory route of delivery the future? Expert Rev Vaccines 13(8):927–930

  37. 37.

    Smaill F et al (2013) A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci Transl Med 5(205):205ra134

  38. 38.

    Jeyanathan M et al (2016) Induction of an immune-protective T-cell repertoire with diverse genetic coverage by a novel viral-vectored tuberculosis vaccine in humans. J Infect Dis 214(12):1996–2005

  39. 39.

    Stylianou E et al (2015) Improvement of BCG protective efficacy with a novel chimpanzee adenovirus and a modified vaccinia Ankara virus both expressing Ag85A. Vaccine 33(48):6800–6808

  40. 40.

    Hawkridge T et al (2008) Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in South Africa. J Infect Dis 198(4):544–552

  41. 41.

    Dockrell HM (2016) Towards new TB vaccines: what are the challenges? Pathog Dis 74(4):ftw016

  42. 42.

    Lu JB et al (2016) Analysis of Koch phenomenon of Mycobacterium tuberculosis-infected guinea pigs vaccinated with recombinant tuberculosis vaccine AEC/BC02. Zhonghua Jie He He Hu Xi Za Zhi 39(7):524–528

  43. 43.

    Perez-Martinez AP et al (2017) Conservation in gene encoding Mycobacterium tuberculosis antigen Rv2660 and a high predicted population coverage of H56 multistage vaccine in South Africa. Infect Genet Evol 55:244–250

  44. 44.

    Lin PL et al (2012) The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J Clin Invest 122(1):303–314

  45. 45.

    Suliman S et al (2019) Dose optimization of H56:IC31 vaccine for tuberculosis-endemic populations. A double-blind, placebo-controlled, dose-selection trial. Am J Respir Crit Care Med 199(2):220–231

  46. 46.

    Luabeya AK et al (2015) First-in-human trial of the post-exposure tuberculosis vaccine H56:IC31 in Mycobacterium tuberculosis infected and non-infected healthy adults. Vaccine 33(33):4130–4140

  47. 47.

    Orr MT et al (2014) A dual TLR agonist adjuvant enhances the immunogenicity and protective efficacy of the tuberculosis vaccine antigen ID93. PLoS One 9(1):e83884

  48. 48.

    Duthie MS et al (2014) Protection against Mycobacterium leprae infection by the ID83/GLA-SE and ID93/GLA-SE vaccines developed for tuberculosis. Infect Immun 82(9):3979–3985

  49. 49.

    Bertholet S et al (2010) A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med 2(53):53ra74

  50. 50.

    Baldwin SL et al (2012) The importance of adjuvant formulation in the development of a tuberculosis vaccine. J Immunol 188(5):2189–2197

  51. 51.

    Baldwin SL et al (2016) Protection and long-lived immunity induced by the ID93/GLA-SE vaccine candidate against a clinical Mycobacterium tuberculosis isolate. Clin Vaccine Immunol 23(2):137–147

  52. 52.

    Cha SB et al (2016) Pulmonary immunity and durable protection induced by the ID93/GLA-SE vaccine candidate against the hyper-virulent Korean Beijing Mycobacterium tuberculosis strain K. Vaccine 34(19):2179–2187

  53. 53.

    Coler RN et al (2013) Therapeutic immunization against Mycobacterium tuberculosis is an effective adjunct to antibiotic treatment. J Infect Dis 207(8):1242–1252

  54. 54.

    Baldwin SL et al (2014) The ID93 tuberculosis vaccine candidate does not induce sensitivity to purified protein derivative. Clin Vaccine Immunol 21(9):1309–1313

  55. 55.

    Coler RN et al (2018) The TLR-4 agonist adjuvant, GLA-SE, improves magnitude and quality of immune responses elicited by the ID93 tuberculosis vaccine: first-in-human trial. NPJ Vaccines 3:34

  56. 56.

    Penn-Nicholson A et al (2018) Safety and immunogenicity of the novel tuberculosis vaccine ID93 + GLA-SE in BCG-vaccinated healthy adults in South Africa: a randomised, double-blind, placebo-controlled phase 1 trial. Lancet Respir Med 6(4):287–298

  57. 57.

    Homolka S, Ubben T, Niemann S (2016) High sequence variability of the ppE18 gene of clinical Mycobacterium tuberculosis complex strains potentially impacts effectivity of vaccine candidate M72/AS01E. PLoS One 11(3):e0152200

  58. 58.

    Montoya J et al (2013) A randomized, controlled dose-finding phase II study of the M72/AS01 candidate tuberculosis vaccine in healthy PPD-positive adults. J Clin Immunol 33(8):1360–1375

  59. 59.

    Skeiky YA et al (1999) Cloning, expression, and immunological evaluation of two putative secreted serine protease antigens of Mycobacterium tuberculosis. Infect Immun 67(8):3998–4007

  60. 60.

    Dillon DC et al (1999) Molecular characterization and human T-cell responses to a member of a novel Mycobacterium tuberculosis mtb39 gene family. Infect Immun 67(6):2941–2950

  61. 61.

    Al-Attiyah R et al (2004) In vitro cellular immune responses to complex and newly defined recombinant antigens of Mycobacterium tuberculosis. Clin Exp Immunol 138(1):139–144

  62. 62.

    Montagnani C et al (2014) Vaccine against tuberculosis: what's new? BMC Infect Dis 14(Suppl 1):S2

  63. 63.

    Nabavinia MS et al (2012) Construction of an expression vector containing Mtb72F of Mycobacterium tuberculosis. Cell J 14(1):61–66

  64. 64.

    Skeiky YA et al (2004) Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J Immunol 172(12):7618–7628

  65. 65.

    Day CL et al (2013) Induction and regulation of T-cell immunity by the novel tuberculosis vaccine M72/AS01 in south African adults. Am J Respir Crit Care Med 188(4):492–502

  66. 66.

    Gillard P et al (2016) Safety and immunogenicity of the M72/AS01E candidate tuberculosis vaccine in adults with tuberculosis: a phase II randomised study. Tuberculosis (Edinb) 100:118–127

  67. 67.

    Idoko OT et al (2014) Safety and immunogenicity of the M72/AS01 candidate tuberculosis vaccine when given as a booster to BCG in Gambian infants: an open-label randomized controlled trial. Tuberculosis (Edinb) 94(6):564–578

  68. 68.

    Kumarasamy N et al (2016) A randomized, controlled safety, and immunogenicity trial of the M72/AS01 candidate tuberculosis vaccine in HIV-positive Indian adults. Medicine (Baltimore) 95(3):e2459

  69. 69.

    Leroux-Roels I et al (2013) Improved CD4(+) T cell responses to Mycobacterium tuberculosis in PPD-negative adults by M72/AS01 as compared to the M72/AS02 and Mtb72F/AS02 tuberculosis candidate vaccine formulations: a randomized trial. Vaccine 31(17):2196–2206

  70. 70.

    Penn-Nicholson A et al (2015) Safety and immunogenicity of candidate vaccine M72/AS01E in adolescents in a TB endemic setting. Vaccine 33(32):4025–4034

  71. 71.

    Thacher EG et al (2014) Safety and immunogenicity of the M72/AS01 candidate tuberculosis vaccine in HIV-infected adults on combination antiretroviral therapy: a phase I/II, randomized trial. AIDS 28(12):1769–1781

  72. 72.

    Kumarasamy N et al (2018) Long-term safety and immunogenicity of the M72/AS01E candidate tuberculosis vaccine in HIV-positive and -negative Indian adults: results from a phase II randomized controlled trial. Medicine (Baltimore) 97(45):S

  73. 73.

    Van Der Meeren O et al (2018) Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N Engl J Med 379(17):1621–1634

  74. 74.

    Cardona PJ (2006) RUTI: a new chance to shorten the treatment of latent tuberculosis infection. Tuberculosis (Edinb) 86(3–4):273–289

  75. 75.

    Vilaplana C et al (2010) Double-blind, randomized, placebo-controlled phase I clinical trial of the therapeutical antituberculous vaccine RUTI. Vaccine 28(4):1106–1116

  76. 76.

    Nell AS et al (2014) Safety, tolerability, and immunogenicity of the novel antituberculous vaccine RUTI: randomized, placebo-controlled phase II clinical trial in patients with latent tuberculosis infection. PLoS One 9(2):e89612

  77. 77.

    von Reyn CF et al (2010) Prevention of tuberculosis in Bacille Calmette-Guerin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. AIDS 24(5):675–685

  78. 78.

    Lahey T et al (2016) Immunogenicity and protective efficacy of the DAR-901 booster vaccine in a murine model of tuberculosis. PLoS One 11(12):e0168521

  79. 79.

    von Reyn CF et al (2017) Safety and immunogenicity of an inactivated whole cell tuberculosis vaccine booster in adults primed with BCG: a randomized, controlled trial of DAR-901. PLoS One 12(5):e0175215

  80. 80.

    Masonou T et al (2019) CD4+ T cell cytokine responses to the DAR-901 booster vaccine in BCG-primed adults: a randomized, placebo-controlled trial. PLoS One 14(5):e0217091

  81. 81.

    Craig SR et al (2018) Altruism, scepticism, and collective decision-making in foreign-born U.S. residents in a tuberculosis vaccine trial. BMC Public Health 18(1):535

  82. 82.

    Sharma P et al (1999) Disabilities in multibacillary leprosy following multidrug therapy with and without immunotherapy with Mycobacterium w antileprosy vaccine. Int J Lepr Other Mycobact Dis 67(3):250–258

  83. 83.

    Sharma P et al (2005) Immunoprophylactic effects of the anti-leprosy Mw vaccine in household contacts of leprosy patients: clinical field trials with a follow up of 8-10 years. Lepr Rev 76(2):127–143

  84. 84.

    Sharma P et al (2000) Mycobacterium w vaccine, a useful adjuvant to multidrug therapy in multibacillary leprosy: a report on hospital based immunotherapeutic clinical trials with a follow-up of 1-7 years after treatment. Lepr Rev 71(2):179–192

  85. 85.

    Guleria I, Mukherjee R, Kaufmann SH (1993) In vivo depletion of CD4 and CD8 T lymphocytes impairs Mycobacterium w vaccine-induced protection against M. tuberculosis in mice. Med Microbiol Immunol 182(3):129–135

  86. 86.

    Gupta A et al (2012) Protective efficacy of Mycobacterium indicus pranii against tuberculosis and underlying local lung immune responses in guinea pig model. Vaccine 30(43):6198–6209

  87. 87.

    Patel N, Deshpande MM, Shah M (2002) Effect of an immunomodulator containing Mycobacterium w on sputum conversion in pulmonary tuberculosis. J Indian Med Assoc 100(3):191–193

  88. 88.

    Patel N, Trapathi SB (2003) Improved cure rates in pulmonary tuberculosis category II (retreatment) with mycobacterium w. J Indian Med Assoc 101(11):680 682

  89. 89.

    Groschel MI et al (2014) Therapeutic vaccines for tuberculosis--a systematic review. Vaccine 32(26):3162–3168

  90. 90.

    Gonzalo-Asensio J et al (2017) MTBVAC: attenuating the human pathogen of tuberculosis (TB) toward a promising vaccine against the TB epidemic. Front Immunol 8:1803

  91. 91.

    Aguilo N et al (2016) MTBVAC vaccine is safe, immunogenic and confers protective efficacy against Mycobacterium tuberculosis in newborn mice. Tuberculosis (Edinb) 96:71–74

  92. 92.

    Marinova D et al (2017) MTBVAC from discovery to clinical trials in tuberculosis-endemic countries. Expert Rev Vaccines 16(6):565–576

  93. 93.

    Spertini F et al (2015) Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase I trial. Lancet Respir Med 3(12):953–962

  94. 94.

    World Health Organization (1995) Global tuberculosis program and global program on vaccine: statement on BCG revaccination for the prevention of tuberculosis. WHO, Geneva

  95. 95.

    World Health Organization (2004) BCG vaccine. WHO position paper. WHO, Geneva

  96. 96.

    World Health Organization (2018) BCG vaccines: WHO position paper-February 2018. WHO, Geneva

  97. 97.

    World Health Organization (2007) Revised BCG vaccination guidelines for infants at risk for HIV infection. WHO, Geneva

  98. 98.

    Husain AA et al (2011) Effect of repeat dose of BCG vaccination on humoral response in mice model. Indian J Exp Biol 49(1):7–10

  99. 99.

    Husain AA et al (2015) Comparative evaluation of booster efficacies of BCG, Ag85B, and Ag85B peptides based vaccines to boost BCG induced immunity in BALB/c mice: a pilot study. Clin Exp Vaccine Res 4(1):83–87

  100. 100.

    Parlane NA et al (2014) Revaccination of cattle with bacille Calmette-Guerin two years after first vaccination when immunity has waned, boosted protection against challenge with Mycobacterium bovis. PLoS One 9(9):e106519

  101. 101.

    Kashyap RS et al (2010) Assessment of immune response to repeat stimulation with BCG vaccine using in vitro PBMC model. J Immune Based Ther Vaccines 8:3

  102. 102.

    Nemes E et al (2018) Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N Engl J Med 379(2):138–149

  103. 103.

    Nieuwenhuizen NE et al (2017) The recombinant Bacille Calmette-Guerin vaccine VPM1002: ready for clinical efficacy testing. Front Immunol 8:1147

  104. 104.

    Hamon MA et al (2012) Listeriolysin O: the Swiss army knife of Listeria. Trends Microbiol 20(8):360–368

  105. 105.

    Shaughnessy LM et al (2006) Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell Microbiol 8(5):781–792

  106. 106.

    Reyrat JM, Berthet FX, Gicquel B (1995) The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette-Guerin. Proc Natl Acad Sci U S A 92(19):8768–8772

  107. 107.

    Gordon AH, Hart PD, Young MR (1980) Ammonia inhibits phagosome-lysosome fusion in macrophages. Nature 286(5768):79–80

  108. 108.

    Kaufmann SH et al (2014) The BCG replacement vaccine VPM1002: from drawing board to clinical trial. Expert Rev Vaccines 13(5):619–630

  109. 109.

    Grode L et al (2013) Safety and immunogenicity of the recombinant BCG vaccine VPM1002 in a phase 1 open-label randomized clinical trial. Vaccine 31(9):1340–1348

  110. 110.

    Loxton AG,Knaul JK,Grode L,Gutschmidt A,Meller C,Eisele B,Johnstone H,van der Spuy G,Maertzdorf J,Kaufmann SHE,Hesseling AC,Walzl G,Cotton MF., Safety and Immunogenicity of the Recombinant Mycobacterium bovis BCG Vaccine VPM1002 in HIV-Unexposed Newborn Infants in South Africa. Clin Vaccine Immunol. 2017 Feb 6;24(2). pii: e00439-16. https://doi.org/10.1128/CVI.00439-16. Print 2017 Feb

  111. 111.

    Lindenstrom T et al (2013) Control of chronic mycobacterium tuberculosis infection by CD4 KLRG1- IL-2-secreting central memory cells. J Immunol 190(12):6311–6319

  112. 112.

    Grode L et al (2005) Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J Clin Invest 115(9):2472–2479

  113. 113.

    Desel C et al (2011) Recombinant BCG DeltaureC hly+ induces superior protection over parental BCG by stimulating a balanced combination of type 1 and type 17 cytokine responses. J Infect Dis 204(10):1573–1584

  114. 114.

    Vogelzang A et al (2014) Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guerin DeltaureC::hly vaccine's superior protection against tuberculosis. J Infect Dis 210(12):1928–1937

  115. 115.

    Gengenbacher M et al (2016) Post-exposure vaccination with the vaccine candidate Bacillus Calmette-Guerin DeltaureC::hly induces superior protection in a mouse model of subclinical tuberculosis. Microbes Infect 18(5):364–368

  116. 116.

    Gengenbacher M, Nieuwenhuizen N, Vogelzang A, Liu H, Kaiser P, Schuerer S, Lazar D, Wagner I, Mollenkopf HJ, Kaufmann SH., Deletion of nuoG from the Vaccine Candidate Mycobacterium bovis BCG DeltaureC::hly Improves Protection against Tuberculosis. mBio.2016 May 24;7(3). pii: e00679-16. https://doi.org/10.1128/mBio.00679-16

  117. 117.

    Velmurugan K et al (2013) Nonclinical development of BCG replacement vaccine candidates. Vaccines (Basel) 1(2):120–138

  118. 118.

    Irwin SM et al (2005) Tracking antigen-specific CD8 T lymphocytes in the lungs of mice vaccinated with the Mtb72F polyprotein. Infect Immun 73(9):5809–5816

  119. 119.

    Brandt L et al (2004) The protective effect of the Mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72F in M. tuberculosis-infected guinea pigs. Infect Immun 72(11):6622–6632

  120. 120.

    Tsenova L et al (2006) Evaluation of the Mtb72F polyprotein vaccine in a rabbit model of tuberculous meningitis. Infect Immun 74(4):2392–2401

  121. 121.

    Reed SG et al (2009) Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc Natl Acad Sci U S A 106(7):2301–2306

  122. 122.

    Cooper AM et al (2009) T cells in mycobacterial infection and disease. Curr Opin Immunol 21(4):378–384

  123. 123.

    Calderon VE et al (2013) A humanized mouse model of tuberculosis. PLoS One 8(5):e63331

  124. 124.

    Commandeur S et al (2014) The in vivo expressed Mycobacterium tuberculosis (IVE-TB) antigen Rv2034 induces CD4+ T-cells that protect against pulmonary infection in HLA-DR transgenic mice and Guinea pigs. Vaccine 32(29):3580–3588

  125. 125.

    Nusbaum RJ et al (2016) Pulmonary tuberculosis in humanized mice infected with HIV-1. Sci Rep 6:21522

  126. 126.

    Lanoix JP et al (2015) Sterilizing activity of pyrazinamide in combination with first-line drugs in a C3HeB/FeJ mouse model of tuberculosis. Antimicrob Agents Chemother 60(2):1091–1096

  127. 127.

    Lanoix JP et al (2015) Heterogeneous disease progression and treatment response in a C3HeB/FeJ mouse model of tuberculosis. Dis Model Mech 8(6):603–610

  128. 128.

    Aagaard C et al (2011) A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med 17(2):189–194

  129. 129.

    Jacobs RE et al (2015) Reactivation of pulmonary tuberculosis during cancer treatment. Int J Mycobacteriol 4(4):337–340

  130. 130.

    Kashino SS et al (2008) Guinea pig model of Mycobacterium tuberculosis latent/dormant infection. Microbes Infect 10(14–15):1469–1476

  131. 131.

    Ordway DJ et al (2010) Evaluation of standard chemotherapy in the guinea pig model of tuberculosis. Antimicrob Agents Chemother 54(5):1820–1833

  132. 132.

    Clark S et al (2014) Animal models of tuberculosis: guinea pigs. Cold Spring Harb Perspect Med 5(5):a018572

  133. 133.

    Converse PJ et al (1996) Cavitary tuberculosis produced in rabbits by aerosolized virulent tubercle bacilli. Infect Immun 64(11):4776–4787

  134. 134.

    Zhang G et al (2010) Evaluation of mycobacterial virulence using rabbit skin liquefaction model. Virulence 1(3):156–163

  135. 135.

    Dannenberg AM Jr (2009) Liquefaction and cavity formation in pulmonary TB: a simple method in rabbit skin to test inhibitors. Tuberculosis (Edinb) 89(4):243–247

  136. 136.

    Sun H et al (2012) Effects of immunomodulators on liquefaction and ulceration in the rabbit skin model of tuberculosis. Tuberculosis (Edinb) 92(4):345–350

  137. 137.

    Peng X et al (2015) Rabbit models for studying human infectious diseases. Comp Med 65(6):499–507

  138. 138.

    Manabe YC et al (2008) The aerosol rabbit model of TB latency, reactivation and immune reconstitution inflammatory syndrome. Tuberculosis (Edinb) 88(3):187–196

  139. 139.

    Rahyussalim AJ et al (2016) New bone formation in tuberculous-infected vertebral body defect after administration of bone marrow stromal cells in rabbit model. Asian Spine J 10(1):1–5

  140. 140.

    Scanga CA et al (1999) Reactivation of latent tuberculosis: variations on the Cornell murine model. Infect Immun 67(9):4531–4538

  141. 141.

    Izzo AA et al (2015) A novel MVA-based multiphasic vaccine for prevention or treatment of tuberculosis induces broad and multifunctional cell-mediated immunity in mice and primates. PLoS One 10(11):e0143552

  142. 142.

    Pena JC et al (2015) Monkey models of tuberculosis: lessons learned. Infect Immun 83(3):852–862

  143. 143.

    Phuah J et al (2016) Effects of B cell depletion on early Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun 84(5):1301–1311

  144. 144.

    Lin PL et al (2009) Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun 77(10):4631–4642

  145. 145.

    Diedrich CR et al (2010) Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS One 5(3):e9611

  146. 146.

    Kupferschmidt K (2011) Infectious disease. Taking a new shot at a TB vaccine. Science 334(6062):1488–1490

  147. 147.

    McShane H et al (2004) Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans. Nat Med 10(11):1240–1244

  148. 148.

    Verreck FA et al (2009) MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS One 4(4):e5264

  149. 149.

    Beveridge NE et al (2007) Immunisation with BCG and recombinant MVA85A induces long-lasting, polyfunctional Mycobacterium tuberculosis-specific CD4+ memory T lymphocyte populations. Eur J Immunol 37(11):3089–3100

  150. 150.

    Minassian AM et al (2011) A phase I study evaluating the safety and immunogenicity of MVA85A, a candidate TB vaccine, in HIV-infected adults. BMJ Open 1(2):e000223

  151. 151.

    Odutola AA et al (2012) A new TB vaccine, MVA85A, induces durable antigen-specific responses 14 months after vaccination in African infants. Vaccine 30(38):5591–5594

  152. 152.

    Pathan AA et al (2012) Effect of vaccine dose on the safety and immunogenicity of a candidate TB vaccine, MVA85A, in BCG vaccinated UK adults. Vaccine 30(38):5616–5624

  153. 153.

    Sander CR et al (2009) Safety and immunogenicity of a new tuberculosis vaccine, MVA85A, in Mycobacterium tuberculosis-infected individuals. Am J Respir Crit Care Med 179(8):724–733

  154. 154.

    Scriba TJ et al (2010) Modified vaccinia Ankara-expressing Ag85A, a novel tuberculosis vaccine, is safe in adolescents and children, and induces polyfunctional CD4+ T cells. Eur J Immunol 40(1):279–290

  155. 155.

    Scriba TJ et al (2011) Dose-finding study of the novel tuberculosis vaccine, MVA85A, in healthy BCG-vaccinated infants. J Infect Dis 203(12):1832–1843

  156. 156.

    Scriba TJ et al (2012) A phase IIa trial of the new tuberculosis vaccine, MVA85A, in HIV- and/or Mycobacterium tuberculosis-infected adults. Am J Respir Crit Care Med 185(7):769–778

  157. 157.

    Tameris MD et al (2013) Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 381(9871):1021–1028

  158. 158.

    Cole ST et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544

  159. 159.

    Kaufmann SH (2011) Fact and fiction in tuberculosis vaccine research: 10 years later. Lancet Infect Dis 11(8):633–640

  160. 160.

    Bhatt K et al (2015) Quest for correlates of protection against tuberculosis. Clin Vaccine Immunol 22(3):258–266

  161. 161.

    Barker LF et al (2009) Tuberculosis vaccine research: the impact of immunology. Curr Opin Immunol 21(3):331–338

  162. 162.

    Cooper AM (2009) T cells in mycobacterial infection and disease. Curr Opin Immunol 21(4):378–384

  163. 163.

    Williams A, Hall Y, Orme IM (2009) Evaluation of new vaccines for tuberculosis in the guinea pig model. Tuberculosis (Edinb) 89(6):389–397

  164. 164.

    Reed SG et al (2003) Prospects for a better vaccine against tuberculosis. Tuberculosis (Edinb) 83(1–3):213–219

  165. 165.

    Fennelly KP et al (2012) Variability of infectious aerosols produced during coughing by patients with pulmonary tuberculosis. Am J Respir Crit Care Med 186(5):450–457

Download references

Author information

Junli Li, Chuan Qin, and Lingjun Zhan conceived the project direction; Junli Li, Jun Tang, and Yanan Shi researched and collated all the relevant literature; Aihua Zhao and Guozhi Wang revised and edited the manuscript; Junli Li wrote the manuscript.

Correspondence to Lingjun Zhan or Chuan Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding information

This work was supported by the National Science and Technology Major Project for Infectious Diseases Control and Prevention (No.2017ZX10201301–006) and CAMS Major Innovation Funding For Medical Science (2016-I2M-2-006).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhao, A., Tang, J. et al. Tuberculosis vaccine development: from classic to clinical candidates. Eur J Clin Microbiol Infect Dis (2020). https://doi.org/10.1007/s10096-020-03843-6

Download citation

Keywords

  • MTB
  • TB
  • BCG
  • Novel TB vaccine
  • Clinical trial