Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Spread of clonal linezolid-resistant Staphylococcus epidermidis in an intensive care unit associated with linezolid exposure

  • 8 Accesses


The aim of the study was to determine factors associated with spread of linezolid (LNZ)-resistant Staphylococcus epidermidis isolates in a surgical intensive care unit (ICU). A case-control study was conducted in one French adult surgical ICU. From January 2012 to December 2016, patients with at least a single positive LNZ-resistant S. epidermidis blood culture were matched to control with LNZ-susceptible S. epidermidis blood culture in a 1:4 manner. Cases were compared to controls regarding baseline clinical characteristics and LNZ exposure before positive blood culture. Bacterial isolates were genotyped by using pulsed-field gel electrophoresis (PFGE) and MLST. We identified 13 LNZ-resistant S. epidermidis isolates, 1 in 2012, 3 in 2014, 6 in 2015, and 3 in 2016. LNZ use increased steadily from 8 DDDs/100 patient days in 2010 to 19 in 2013 and further decrease by more of 50% in 2015 and 2016. The only independent risk factors associated to LNZ-resistant S. epidermidis isolation were length of stay in ICU before infection (OR 1.45; 95% CI 1.07–1.98), prior exposure to LNZ (OR 109; 95% CI 3.9–3034), and Charlson comorbidities score (OR 3.19; 95% CI 1.11–9.14). PFGE typing showed that all LNZ-resistant isolates were clonal belonging to ST2 and that LNZ-susceptible isolates were highly diverse. We report herein that previous exposure to LNZ substantially increased the risk of occurrence of LNZ resistance in S. epidermidis even in the case of clonal spread of LNZ-resistant isolates. These findings highlight the need for reducing the use of LNZ to preserve its efficacy in the future.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Rogers KL, Fey PD, Rupp ME (2009) Coagulase-negative staphylococcal infections. Infect Dis Clin N Am 23:73–98. https://doi.org/10.1016/j.idc.2008.10.001

  2. 2.

    Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis Off Publ Infect Dis Soc Am 1(39):309–317. https://doi.org/10.1086/421946

  3. 3.

    Long KS, Vester B (2012) Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother 56:603–612. https://doi.org/10.1128/AAC.05702-11

  4. 4.

    Dortet L, Glaser P, Kassis-Chikhani N, Girlich D, Ichai P, Boudon M et al (2017) Long-lasting successful dissemination of resistance to oxazolidinones in MDR Staphylococcus epidermidis clinical isolates in a tertiary care hospital in France. J Antimicrob Chemother 30. https://doi.org/10.1093/jac/dkx370/4582307

  5. 5.

    Tewhey R, Gu B, Kelesidis T, Charlton C, Bobenchik A, Hindler J et al (2014) Mechanisms of linezolid resistance among coagulase-negative staphylococci determined by whole-genome sequencing. mBio 13(5):e00894–e00814. https://doi.org/10.1128/mBio.00894-14

  6. 6.

    Bonilla H, Huband MD, Seidel J, Schmidt H, Lescoe M, McCurdy SP et al (2010) Multicity outbreak of linezolid-resistant Staphylococcus epidermidis associated with clonal spread of a cfr-containing strain. Clin Infect Dis Off Publ Infect Dis Soc Am 1(51):796–800. https://doi.org/10.1086/656281

  7. 7.

    Weßels C, Strommenger B, Klare I, Bender J, Messler S, Mattner F et al (2018) Emergence and control of linezolid-resistant Staphylococcus epidermidis in an ICU of a German hospital. J Antimicrob Chemother 1(73):1185–1193. https://doi.org/10.1093/jac/dky010

  8. 8.

    Li X, Arias CA, Aitken SL, Galloway Peña J, Panesso D, Chang M et al (2018) Clonal emergence of invasive multidrug-resistant Staphylococcus epidermidis deconvoluted via a combination of whole-genome sequencing and microbiome analyses. Clin Infect Dis 18(67):398–406. https://doi.org/10.1093/cid/ciy089

  9. 9.

    Garner JS, Jarvis WR, Emori TG, Horan TC, Hughes JM (1988) CDC definitions for nosocomial infections, 1988. Am J Infect Control 16:128–140

  10. 10.

    EUCAST: clinical breakpoints and dosing of antibiotics. 2019 http://www.eucast.org/clinical_breakpoints/, cited 2019 6

  11. 11.

    Boisson K, Thouverez M, Talon D, Bertrand X (2002) Characterisation of coagulase-negative staphylococci isolated from blood infections: incidence, susceptibility to glycopeptides, and molecular epidemiology. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 21:660–665. https://doi.org/10.1007/s10096-002-0799-9

  12. 12.

    Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH et al (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239

  13. 13.

    Thomas JC, Vargas MR, Miragaia M, Peacock SJ, Archer GL, Enright MC (2007) Improved multilocus sequence typing scheme for Staphylococcus epidermidis. J Clin Microbiol 45:616–619. https://doi.org/10.1128/JCM.01934-06

  14. 14.

    Mendes RE, Deshpande L, Streit JM, Sader HS, Castanheira M, Hogan PA et al (2018) ZAAPS programme results for 2016: an activity and spectrum analysis of linezolid using clinical isolates from medical centres in 42 countries. J Antimicrob Chemother 1(73):1880–1887. https://doi.org/10.1093/jac/dky099

  15. 15.

    Pfaller MA, Mendes RE, Streit JM, Hogan PA, Flamm RK (2017) Five-year summary of in vitro activity and resistance mechanisms of linezolid against clinically important Gram-positive cocci in the United States from the LEADER surveillance program (2011 to 2015). Antimicrob. Agents Chemother 61. https://doi.org/10.1128/AAC.00609-17

  16. 16.

    Gu B, Kelesidis T, Tsiodras S, Hindler J, Humphries RM (2013) The emerging problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother 68:4–11. https://doi.org/10.1093/jac/dks354

  17. 17.

    Liakopoulos A, Spiliopoulou I, Damani A, Kanellopoulou M, Schoina S, Papafragas E et al (2010) Dissemination of two international linezolid-resistant Staphylococcus epidermidis clones in Greek hospitals. J Antimicrob Chemother 65:1070–1071. https://doi.org/10.1093/jac/dkq065

  18. 18.

    Treviño M, Martínez-Lamas L, Romero-Jung PA, Giráldez JM, Alvarez-Escudero J, Regueiro BJ (2009) Endemic linezolid-resistant Staphylococcus epidermidis in a critical care unit. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 28:527–533. https://doi.org/10.1007/s10096-008-0657-5

  19. 19.

    Kelly S, Collins J, Maguire M, Gowing C, Flanagan M, Donnelly M et al (2008) An outbreak of colonization with linezolid-resistant Staphylococcus epidermidis in an intensive therapy unit. J Antimicrob Chemother 61:901–907. https://doi.org/10.1093/jac/dkn043

  20. 20.

    Seral C, Sáenz Y, Algarate S, Duran E, Luque P, Torres C et al (2011) Nosocomial outbreak of methicillin- and linezolid-resistant Staphylococcus epidermidis associated with catheter-related infections in intensive care unit patients. Int J Med Microbiol IJMM 301:354–358. https://doi.org/10.1016/j.ijmm.2010.11.001

  21. 21.

    Potoski BA, Adams J, Clarke L, Shutt K, Linden PK, Baxter C et al (2006) Epidemiological profile of linezolid-resistant coagulase-negative staphylococci. Clin Infect Dis Off Publ Infect Dis Soc Am 15(43):165–171. https://doi.org/10.1086/505114

  22. 22.

    Bouiller K, Bador J, Bruyère R, Toitot A, Prin S, Quenot J-P et al (2017 http://linkinghub.elsevier.com/retrieve/pii/S0924857917303187 [cited 2017 28]) Recent exposure to linezolid is strongly associated with the isolation of linezolid-resistant coagulase-negative staphylococcus species in patients with related infection or colonization: a case-control study in an intensive care unit. Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2017.08.026

  23. 23.

    Baos E, Candel FJ, Merino P, Pena I, Picazo JJ (2013) Characterization and monitoring of linezolid-resistant clinical isolates of Staphylococcus epidermidis in an intensive care unit 4 years after an outbreak of infection by cfr-mediated linezolid-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 76:325–329. https://doi.org/10.1016/j.diagmicrobio.2013.04.002

  24. 24.

    Safdar N, Maki DG (2002) The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Ann Intern Med 4(136):834–844

  25. 25.

    Petinaki E, Kanellopoulou M, Damani A, Foka A, Spiliopoulou I, Skalmoutsou N et al (2009) Linezolid-resistant Staphylococcus cohnii. Greece Emerg Infect Dis 15:116–118. https://doi.org/10.3201/eid1501.080769

  26. 26.

    Mulanovich VE, Huband MD, McCurdy SP, Lemmon MM, Lescoe M, Jiang Y et al (2010) Emergence of linezolid-resistant coagulase-negative Staphylococcus in a cancer centre linked to increased linezolid utilization. J Antimicrob Chemother 65:2001–2004. https://doi.org/10.1093/jac/dkq238

  27. 27.

    Surveillance de la consommation des antibiotiques / 2018 / Maladies infectieuses / Rapports et synthèses / Publications et outils / Accueil. [cited 2019 29]; http://invs.santepubliquefrance.fr/Publications-et-outils/Rapports-et-syntheses/Maladies-infectieuses/2018/Surveillance-de-la-consommation-des-antibiotiques

  28. 28.

    Papadimitriou-Olivgeris M, Giormezis N, Fligou F, Liakopoulos A, Marangos M, Anastassiou ED et al (2013) Factors influencing linezolid-nonsusceptible coagulase-negative staphylococci dissemination among patients in the intensive care unit: a retrospective cohort study. Chemotherapy 59:420–426. https://doi.org/10.1159/000363281

  29. 29.

    Mihaila L, Defrance G, Levesque E, Ichai P, Garnier F, Derouin V et al (2012) A dual outbreak of bloodstream infections with linezolid-resistant Staphylococcus epidermidis and Staphylococcus pettenkoferi in a liver intensive care unit. Int J Antimicrob Agents 40:472–474. https://doi.org/10.1016/j.ijantimicag.2012.06.014

  30. 30.

    Harris AD, Samore MH, Lipsitch M, Kaye KS, Perencevich E, Carmeli Y (2002) Control-group selection importance in studies of antimicrobial resistance: examples applied to Pseudomonas aeruginosa, Enterococci, and Escherichia coli, Clin Infect Dis Off Publ Infect Dis Soc Am. 15(34):1558–1563. https://doi.org/10.1086/340533

Download references

Author information

K.B. analyzed the data, K.B. wrote the manuscript with support from X.B and C.C. X.B., P.H.W, and C.C conceived the study, P.C performed bacteriological analysis. D.I. and P.H.W collected data. All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Correspondence to Kevin Bouiller.

Ethics declarations

Ethics approval and consent to participate

Not applicable. According to French legislation in this period, and because no intervention was performed on patients, no written informed consent was given by the patients.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bouiller, K., Ilic, D., Wicky, P.H. et al. Spread of clonal linezolid-resistant Staphylococcus epidermidis in an intensive care unit associated with linezolid exposure. Eur J Clin Microbiol Infect Dis (2020). https://doi.org/10.1007/s10096-020-03842-7

Download citation


  • Linezolid
  • Antibiotic resistance
  • Risk factors
  • Genotyping
  • Staphylococcus epidermidis