Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The emergence of carbapenemase blaNDM genotype among carbapenem-resistant Enterobacteriaceae isolates from Egyptian cancer patients

Abstract

Carbapenem resistance among Enterobacteriaceae is a major concern that is increasingly reported worldwide. The objective of this study is to determine the incidence of carbapenem resistance as well as to investigate for carbapenemase-encoding genes among Enterobacteriaceae clinical isolates from cancer patients at different cancer institutes in Egypt. This determination was a cross-sectional study with a total of 135 clinical isolates collected over a period of 1 year. All isolates were sub-cultured on ChromID agar and subjected to phenotypic and molecular detection of carbapenemases. Most of the Enterobacteriaceae isolates were MDR with high resistance rates against tested antimicrobials. Overall, the results of PCR assays revealed that 89.62% (121/135) of isolates harbored one or more of the carbapenemase-encoding genes, while phenotypic assays revealed the production of carbapenemases in 68.88% (93/135) of isolates. BlastN analysis against the non-redundant genome sequences available in the GenBank database revealed that the blaNDM-1 gene was the most prevalent genotype of carbapenemases in 93/135 (68.88%), followed by blaOXA-48 44/135 (32.59%), blaOXA-23 42/135 (31.11%), and blaKPC-2 2/135 (1.48%). Klebsiella pneumoniae isolates harbored the highest number of carbapenemase-encoding genes 34/121 (28.09%). The high prevalence of carbapenemases and/or their encoding genes among MDR Enterobacteriaceae bacteria in Egypt is alarming, thus, the management of serious infections caused by Enterobacteriaceae, particularly in cancer patients will be challenging to clinicians. Carbapenemase blaNDM genotype is emerging in cancer healthcare settings in Egypt, which could be the cause of the current increase in carbapenemase-producing Enterobacteriaceae.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Nordmann P, Dortet L, Poirel L (2012) Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 18:263–272. https://doi.org/10.1016/j.molmed.2012.03.003

  2. 2.

    Nordmann P, Naas T, Poirel L (2011) Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17:1791–1798. https://doi.org/10.3201/eid1710.110655

  3. 3.

    Paterson DL (2006) Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Infect Control 34:S20–S28. https://doi.org/10.1016/j.ajic.2006.05.238

  4. 4.

    Ghaith DM, Zafer MM, Said HM, Elanwary S, Elsaban S, Al-Agamy MH et al (2019) Genetic diversity of carbapenem-resistant Klebsiella pneumoniae causing neonatal sepsis in intensive care unit, Cairo, Egypt. Eur J Clin Microbiol Infect Dis. https://doi.org/10.1007/s10096-019-03761-2

  5. 5.

    Mushi MF, Mshana SE, Imirzalioglu C, Bwanga F (2014) Carbapenemase genes among multidrug resistant gram negative clinical isolates from a tertiary hospital in Mwanza, Tanzania. Biomed Res Int 2014:303104. https://doi.org/10.1155/2014/303104

  6. 6.

    Moquet O, Bouchiat C, Kinana A, Seck A, Arouna O, Bercion R et al (2011) Class D OXA-48 carbapenemase in multidrug-resistant enterobacteria, Senegal. Emerg Infect Dis 17:143–144. https://doi.org/10.3201/eid1701.100244

  7. 7.

    Karuniawati A, Saharman YR, Lestari DC (2013) Detection of carbapenemase encoding genes in Enterobacteriace, Pseudomonas aeruginosa, and Acinetobacter baumanii isolated from patients at Intensive Care Unit Cipto Mangunkusumo Hospital in 2011. Acta Med Indones 45:101–106. https://www.ncbi.nlm.nih.gov/pubmed/23770789. Accessed Apr 2013

  8. 8.

    Abdulall AK, Tawfick MM, El Manakhly AR, El Kholy A (2018) Carbapenem-resistant Gram-negative bacteria associated with catheter-related bloodstream infections in three intensive care units in Egypt. Eur J Clin Microbiol Infect Dis 37:1647–1652. https://doi.org/10.1007/s10096-018-3294-7

  9. 9.

    Bratu S, Landman D, Haag R, Recco R, Eramo A, Alam M et al (2005) Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City. Arch Intern Med 165:1430. https://doi.org/10.1001/archinte.165.12.1430

  10. 10.

    Queenan AM, Bush K (2007) Carbapenemases: the versatile-lactamases. Clin Microbiol Rev 20:440–458. https://doi.org/10.1128/CMR.00001-07

  11. 11.

    Miriagou V, Cornaglia G, Edelstein M, Galani I, Giske CG, Gniadkowski M et al (2010) Acquired carbapenemases in Gram-negative bacterial pathogens: detection and surveillance issues. Clin Microbiol Infect 16:112–122. https://doi.org/10.1111/j.1469-0691.2009.03116.x

  12. 12.

    Huang T-D, Poirel L, Bogaerts P, Berhin C, Nordmann P, Glupczynski Y (2014) Temocillin and piperacillin/tazobactam resistance by disc diffusion as antimicrobial surrogate markers for the detection of carbapenemase-producing Enterobacteriaceae in geographical areas with a high prevalence of OXA-48 producers. J Antimicrob Chemother 69:445–450. https://doi.org/10.1093/jac/dkt367

  13. 13.

    Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriagou V et al (2012) Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect 18:432–438. https://doi.org/10.1111/j.1469-0691.2012.03815.x

  14. 14.

    The Clinical and Laboratory Standards Institute (2016) Performance Standards for Antimicrobial Susceptibility Testing CLSI supplement M100S

  15. 15.

    Pasteran F, Mendez T, Guerriero L, Rapoport M, Corso A (2009) Sensitive screening tests for suspected class A carbapenemase production in species of Enterobacteriaceae. J Clin Microbiol 47:1631–1639. https://doi.org/10.1128/JCM.00130-09

  16. 16.

    Tsakris A, Kristo I, Poulou A, Markou F, Ikonomidis A, Pournaras S (2008) First occurrence of KPC-2-possessing Klebsiella pneumoniae in a Greek hospital and recommendation for detection with boronic acid disc tests. J Antimicrob Chemother 62:1257–1260. https://doi.org/10.1093/jac/dkn364

  17. 17.

    Kaore N, Nagdeo N, Thombare V (2012) Phenotypic methods for detection of various β-lactamases in Gram-negative clinical isolates: need of the hour. Chronicles Young Sci 3:292. https://doi.org/10.4103/2229-5186.103098

  18. 18.

    Pournaras S, Poulou A, Tsakris A (2010) Inhibitor-based methods for the detection of KPC carbapenemase-producing Enterobacteriaceae in clinical practice by using boronic acid compounds. J Antimicrob Chemother 65:1319–1321. https://doi.org/10.1093/jac/dkq124

  19. 19.

    Bakthavatchalam YD, Veeraraghavan B, Peter JV, Rajinikanth J, Inbanathan FY, Devanga Ragupathi NK et al (2016) Novel Observations in 11 heteroresistant vancomycin-intermediate methicillin-resistant Staphylococcus aureus strains from South India. Genome Announc 4. https://doi.org/10.1128/genomeA.01425-16

  20. 20.

    Kabir MI, Rahman MB, Smith W, Lusha MAF, Azim S, Milton AH (2016) Knowledge and perception about climate change and human health: findings from a baseline survey among vulnerable communities in Bangladesh. BMC Public Health 16:266. https://doi.org/10.1186/s12889-016-2930-3

  21. 21.

    Maurer A, Draba V, Jiang Y, Schnaithmann F, Sharma R, Schumann E et al (2015) Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genomics 16:290. https://doi.org/10.1186/s12864-015-1459-7

  22. 22.

    Pitout JDD, Nordmann P, Poirel L (2015) Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 59:5873–5884. https://doi.org/10.1128/AAC.01019-15

  23. 23.

    Hrabák J, Chudáčkova E, Papagiannitsis CC (2014) Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect 20:839–853. https://doi.org/10.1111/1469-0691.12678

  24. 24.

    Huang M, Parker MJ, Stubbe J (2014) Choosing the right metal: case studies of class I ribonucleotide reductases. J Biol Chem 289:28104–28111. https://doi.org/10.1074/jbc.R114.596684

  25. 25.

    van der Zee HH, Jemec GBE (2015) New insights into the diagnosis of hidradenitis suppurativa: clinical presentations and phenotypes. J Am Acad Dermatol 73:S23–S26. https://www.ncbi.nlm.nih.gov/pubmed/26950458. Accessed Feb 2016

  26. 26.

    Maulana F, Ayalew H, Anderson JD, Kumssa TT, Huang W, Ma X-F (2018) Genome-wide association mapping of seedling heat tolerance in winter wheat. Front Plant Sci 9:1272. https://doi.org/10.3389/fpls.2018.01272

  27. 27.

    Liao Q, Xie Y, Wang C, Zong Z, Wu S, Liu Y et al (2019) Development and evaluation of the method for detecting metallo-carbapenemases among carbapenemase-producing Enterobacteriaceae. J Microbiol Methods 163:105652. https://doi.org/10.1016/J.MIMET.2019.105652

  28. 28.

    Abd El-Hamid MI, Bendary MM, Merwad AMA, Elsohaby I, Mohammad Ghaith D, Alshareef WA (2019) What is behind phylogenetic analysis of hospital-, community- and livestock-associated methicillin-resistant Staphylococcus aureus? Transbound Emerg Dis:tbed.13170. https://doi.org/10.1111/tbed.13170

  29. 29.

    Bendary MM, Solyman SM, Azab MM, Mahmoud NF, Hanora AM (2016) Characterization of methicillin resistant Staphylococcus aureus isolated from human and animal samples in Egypt. Cell Mol Biol (Noisy-le-grand) 62:94–100. http://www.ncbi.nlm.nih.gov/pubmed/26950458

  30. 30.

    Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT, Andrasević AT et al (2017) Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis 17:153–163. https://doi.org/10.1016/S1473-3099(16)30257-2

  31. 31.

    World Health Organization (2014) Health service coverage. In: World health statistics 2014. WHO Press, Geneva, pp 104–115

  32. 32.

    Kádár B, Kocsis B, Tóth Á, Damjanova I, Szász M, Kristóf K et al (2013) Synergistic antibiotic combinations for colistin-resistant Klebsiella pneumoniae. Acta Microbiol Immunol Hung 60:201–209. https://doi.org/10.1556/AMicr.60.2013.2.10

  33. 33.

    Baran I, Aksu N (2016) Phenotypic and genotypic characteristics of carbapenem-resistant Enterobacteriaceae in a tertiary-level reference hospital in Turkey. Ann Clin Microbiol Antimicrob 15:20. https://doi.org/10.1186/s12941-016-0136-2

  34. 34.

    Rossi B, Gasperini ML, Leflon-Guibout V, Gioanni A, de Lastours V, Rossi G et al (2018) Hypervirulent Klebsiella pneumoniae in cryptogenic liver abscesses, Paris, France. Emerg Infect Dis 24:221–229. https://doi.org/10.3201/eid2402.170957

  35. 35.

    Oduyebo O, Falayi O, Oshun P, Ettu A (2015) Phenotypic determination of carbapenemase producing Enterobacteriaceae isolates from clinical specimens at a tertiary hospital in Lagos, Nigeria. Niger Postgrad Med J 22:223. https://doi.org/10.4103/1117-1936.173973

  36. 36.

    Rudresh SM, Ravi GS, Sunitha L, Hajira SN, Kalaiarasan E, Harish BN (2017) Simple, rapid, and cost-effective modified Carba NP test for carbapenemase detection among Gram-negative bacteria. J Lab Physicians 9:303–307. https://doi.org/10.4103/JLP.JLP_138_16

  37. 37.

    AlTamimi M, AlSalamah A, AlKhulaifi M, AlAjlan H (2017) Comparison of phenotypic and PCR methods for detection of carbapenemases production by Enterobacteriaceae. Saudi J Biol Sci 24:155–161. https://doi.org/10.1016/j.sjbs.2016.07.004

  38. 38.

    Solanki R, Vanjari L, Subramanian S, Aparna B, Nagapriyanka E, Lakshmi V (2014) Comparative evaluation of multiplex PCR and routine laboratory phenotypic methods for detection of carbapenemases among gram negative Bacilli. J Clin Diagn Res 8:DC23–DC26. https://doi.org/10.7860/JCDR/2014/10794.5322

  39. 39.

    Kumar S, Mehra SK. Performance of modified Hodge test and combined disc test for detection of carbapenemases in clinical isolates of Enterobacteriaceae. Int J Curr Microbiol App Sci 2015;4:255–261. doi: https://www.ijcmas.com/vol-4-5/SanjeevKumarandS.K.Mehra.pdf

  40. 40.

    Kazi M, Drego L, Nikam C, Ajbani K, Soman R, Shetty A et al (2015) Molecular characterization of carbapenem-resistant Enterobacteriaceae at a tertiary care laboratory in Mumbai. Eur J Clin Microbiol Infect Dis 34:467–472. https://doi.org/10.1007/s10096-014-2249-x

  41. 41.

    El-Sweify MA, Gomaa NI, El-maraghy NN (2015) Phenotypic detection of carbapenem resistance among Klebsiella pneumoniae in Suez Canal University Hospitals, Ismailiya, Egypt. Int J Curr Microbiol App Sci 4:10–18

  42. 42.

    Studentova V, Papagiannitsis CC, Izdebski R, Pfeifer Y, Chudackova E, Bergerova T et al (2015) Detection of OXA-48-type carbapenemase-producing Enterobacteriaceae in diagnostic laboratories can be enhanced by addition of bicarbonates to cultivation media or reaction buffers. Folia Microbiol (Praha) 60:119–129. https://doi.org/10.1007/s12223-014-0349-8

  43. 43.

    Devi U, Bora R, Das J, Mahanta J (2018) Extended-spectrum β-lactamase, carbapenemase-producing Gram-negative bacilli in neonates from a tertiary care centre in Dibrugarh, Assam. India Indian J Med Res 147:110. https://doi.org/10.4103/ijmr.IJMR_1288_16

  44. 44.

    Khosravi Y, Loke MF, Chua EG, Tay ST, Vadivelu J (2012) Phenotypic detection of metallo-β-lactamase in imipenem-resistant Pseudomonas aeruginosa. Sci World J 2012:1–7. https://doi.org/10.1100/2012/654939

  45. 45.

    Poirel L, Revathi G, Bernabeu S, Nordmann P (2011) Detection of NDM-1-producing Klebsiella pneumoniae in Kenya. Antimicrob Agents Chemother 55:934–936. https://doi.org/10.1128/AAC.01247-10

  46. 46.

    Brink AJ, Coetzee J, Clay CG, Sithole S, Richards GA, Poirel L et al (2012) Emergence of New Delhi metallo-beta-lactamase (NDM-1) and Klebsiella pneumoniae carbapenemase (KPC-2) in South Africa. J Clin Microbiol 50:525–527. https://doi.org/10.1128/JCM.05956-11

  47. 47.

    Coetzee J, Brink A (2011) The emergence of carbapenem resistance in Enterobacteriaceae in South Africa. South African J Epidemiol Infect 26:239–240. https://doi.org/10.1080/10158782.2011.11441460

  48. 48.

    Iman FEG, Marwa AM, Doaa AY (2016) Phenotypic and genotypic methods for detection of metallo beta lactamases among carbapenem resistant Enterobacteriaceae clinical isolates in Alexandria Main University Hospital. Afr J Microbiol Res 10:32–40. https://doi.org/10.5897/AJMR2015.7821

  49. 49.

    Lutgring JD, Zhu W, de Man TJB, Avillan JJ, Anderson KF, Lonsway DR et al (2018) Phenotypic and genotypic characterization of Enterobacteriaceae producing oxacillinase-48-like carbapenemases. United States Emerg Infect Dis 24:700–709. https://doi.org/10.3201/eid2404.171377

  50. 50.

    Lloyd NA, Nazaret S, Barkay T (2018) Whole genome sequences to assess the link between antibiotic and metal resistance in three coastal marine bacteria isolated from the mummichog gastrointestinal tract. Mar Pollut Bull 135:514–520. https://doi.org/10.1016/J.MARPOLBUL.2018.07.051

  51. 51.

    Hamprecht A, Vehreschild JJ, Seifert H, Saleh A (2018) Rapid detection of NDM, KPC and OXA-48 carbapenemases directly from positive blood cultures using a new multiplex immunochromatographic assay. PLoS One 13:e0204157. https://doi.org/10.1371/journal.pone.0204157

  52. 52.

    Vali L, Dashti AA, Jadaon MM, El-Shazly S (2015) The emergence of plasmid mediated quinolone resistance qnrA2 in extended spectrum β-lactamase producing Klebsiella pneumoniae in the Middle East. Daru 23:34. https://doi.org/10.1186/s40199-015-0116-7

Download references

Funding

This work has not received any funding.

Author information

Correspondence to Abeer K. Abdulall.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethical Committee of Egyptian Hospitals.

Informed consent

No written informed consent was necessary for this type of study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tawfick, M.M., Alshareef, W.A., Bendary, H.A. et al. The emergence of carbapenemase blaNDM genotype among carbapenem-resistant Enterobacteriaceae isolates from Egyptian cancer patients. Eur J Clin Microbiol Infect Dis (2020). https://doi.org/10.1007/s10096-020-03839-2

Download citation

Keywords

  • Carbapenemases
  • bla NDM
  • Enterobacteriaceae
  • Cancer patients
  • Resistance
  • MDR