Emergence of community-acquired methicillin-resistant Staphylococcus aureus EMRSA-15 clone as the predominant cause of diabetic foot ulcer infections in Portugal

  • Vanessa Silva
  • Francisco Almeida
  • José António Carvalho
  • Ana Paula Castro
  • Eugénia Ferreira
  • Vera Manageiro
  • María Teresa Tejedor-Junco
  • Manuela Caniça
  • Gilberto Igrejas
  • Patrícia PoetaEmail author
Original Article


Methicillin-resistant Staphylococcus aureus (MRSA) are often found in infected diabetic foot ulcers, in which the prevalence may reach 40%. These complications are one of the main causes of morbidity in diabetic patients. The objectives of this study were to investigate the prevalence and antimicrobial resistance of MRSA strains in infected diabetic foot ulcers and to characterize their genetic lineages. Samples collected from 42 type 2 diabetic patients, presenting infected foot ulcers, were seeded onto ORSAB plates with 2 mg/L of oxacillin for MRSA isolation. Susceptibility to 14 antimicrobial agents was tested by the Kirby-Bauer disk diffusion method. The presence of resistance genes, virulence factors, and the immune evasion cluster system was studied by PCR. All isolates were characterized by MLST, accessory gene regulator (agr), spa, and staphylococcal chromosomal cassette mec (SCCmec) typing. Twenty-five MRSA strains were isolated. All isolates showed resistance to penicillin and cefoxitin. Sixteen isolates showed phenotypic resistance to erythromycin being 7 co-resistant to clindamycin. Resistance to trimethoprim-sulfamethoxazole was found in 2 isolates harboring the dfrA and dfrG genes. The IEC genes were detected in 80% of isolates, 16 of which were ascribed to IEC-type B. Isolates were assigned to 12 different spa types. The MLST analysis grouped the isolates into 7 sequence types being the majority (68%) ascribed to SCCmec type IV. In this study, there was a high prevalence of the EMRSA-15 clone presenting multiple resistances in diabetic foot ulcers making these infections complicated to treat leading to a higher morbidity and mortality in diabetic patients.


Methicillin-resistant Staphylococcus aureus Infection Diabetic foot ulcers CA-MRSA EMRSA-15 


Funding information

This work was funded by the R&D Project CAREBIO2 - Comparative assessment of antimicrobial resistance in environmental biofilms through proteomics - towards innovative theranostic biomarkers, with reference NORTE-01-0145-FEDER-030101 and PTDC/SAU-INF/30101/2017, financed by the European Regional Development Fund (ERDF) through the Northern Regional Operational Program (NORTE 2020) and the Foundation for Science and Technology (FCT). This work was supported by the Associate Laboratory for Green Chemistry-LAQV which is financed by national funds from FCT/MCTES (UID/QUI/50006/2019). Vanessa Silva is supported by national funds through FCT/MCTES and by the European Social Fund through POCH/FSE under the PhD grant SFRH/BD/137947/2018.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.


  1. 1.
    Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Med Chem 6:25–64. CrossRefGoogle Scholar
  2. 2.
    De Sousa MA (2012) Methicillin-resistant Staphylococcus aureus (MRSA): a public health nightmare. Salut Sci 4:18–30Google Scholar
  3. 3.
    ECDC (2018) Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2017. ECDC, StockholmGoogle Scholar
  4. 4.
    Aires-de-Sousa M (2017) Methicillin-resistant Staphylococcus aureus among animals: current overview. Clin Microbiol Infect 23:373–380. CrossRefPubMedGoogle Scholar
  5. 5.
    Boswihi SS, Udo EE (2018) Methicillin-resistant Staphylococcus aureus: an update on the epidemiology, treatment options and infection control. Curr Med Res Pract 8:18–24. CrossRefGoogle Scholar
  6. 6.
    Cervantes-García E, García-González R, Reséndiz-Albor A, Salazar-Schettino PM (2015) Infections of diabetic foot ulcers with methicillin-resistant Staphylococcus aureus. Int J Low Extrem Wounds 14:44–49. CrossRefPubMedGoogle Scholar
  7. 7.
    Pemayun TGD, Naibaho RM, Novitasari D, Amin N, Minuljo TT (2015) Risk factors for lower extremity amputation in patients with diabetic foot ulcers: a hospital-based case–control study. Diabet Foot Ankle 6. CrossRefGoogle Scholar
  8. 8.
    Lavery LA, La Fontaine J, Bhavan K, Kim PJ, Williams JR, Hunt NA (2014) Risk factors for methicillin-resistant Staphylococcus aureus in diabetic foot infections. Diabet Foot Ankle 5. CrossRefGoogle Scholar
  9. 9.
    Citron DM, Goldstein EJC, Merriam CV, Lipsky BA, Abramson MA (2007) Bacteriology of moderate-to-severe diabetic foot infections and in vitro activity of antimicrobial agents. J Clin Microbiol 45:2819–2828. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Víquez-Molina G, Aragón-Sánchez J, Pérez-Corrales C, Murillo-Vargas C, López-Valverde ME, Lipsky BA (2018) Virulence factor genes in Staphylococcus aureus isolated from diabetic foot soft tissue and bone infections. Int J Low Extrem Wounds 17:36–41. CrossRefPubMedGoogle Scholar
  11. 11.
    Pickwell K, Siersma V, Kars M, Apelqvist J, Bakker K, Edmonds M et al (2015) Predictors of lower-extremity amputation in patients with an infected diabetic foot ulcer. Diabetes Care 38:852–857CrossRefGoogle Scholar
  12. 12.
    Wagner FW (1981) The dysvascular foot: a system for diagnosis and treatment. Foot Ankle 2:64–122. CrossRefPubMedGoogle Scholar
  13. 13.
    Lipsky BA (2004) A report from the international consensus on diagnosing and treating the infected diabetic foot. Diabetes Metab Res Rev 20:S68–S77. CrossRefPubMedGoogle Scholar
  14. 14.
    Gómez-Sanz E, Torres C, Lozano C, Fernández-Pérez R, Aspiroz C, Ruiz-Larrea F et al (2010) Detection, molecular characterization, and clonal diversity of methicillin-resistant Staphylococcus aureus CC398 and CC97 in Spanish slaughter pigs of different age groups. Foodborne Pathog Dis 7:1269–1277. CrossRefPubMedGoogle Scholar
  15. 15.
    Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B (2005) A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol 57:1064–1073. CrossRefPubMedGoogle Scholar
  16. 16.
    Yu F, Liu Y, Lv J, Qi X, Lu C, Ding Y et al (2015) Antimicrobial susceptibility, virulence determinant carriage and molecular characteristics of Staphylococcus aureus isolates associated with skin and soft tissue infections. Braz J Infect Dis 19:614–622. CrossRefPubMedGoogle Scholar
  17. 17.
    Lina G, Piemont Y, Godail-Gamot F, Bes M, Peter M-O, Gauduchon V et al (1999) Involvement of Panton-Valentine leukocidin - producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29:1128–1132. CrossRefPubMedGoogle Scholar
  18. 18.
    van Wamel WJB, Rooijakkers SHM, Ruyken M, van Kessel KPM, van Strijp JAG (2006) The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on β-hemolysin-converting bacteriophages. J Bacteriol 188:1310–1315. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shopsin B, Mathema B, Alcabes P, Said-Salim B, Lina G, Matsuka A et al (2003) Prevalence of agr specificity groups among Staphylococcus aureus strains colonizing children and their guardians. J Clin Microbiol 41:456–459. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang K, McClure J-A, Elsayed S, Louie T, Conly JM (2005) Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43:5026–5033. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    ECDC (2018) European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe – Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2017. ECDC, StockholmGoogle Scholar
  22. 22.
    Tentolouris N, Petrikkos G, Vallianou N, Zachos C, Daikos GL, Tsapogas P et al (2005) Prevalence of methicillin-resistant Staphylococcus aureus in infected and uninfected diabetic foot ulcers. Clin Microbiol Infect 12:186–189. CrossRefGoogle Scholar
  23. 23.
    Nather A, Bee CS, Huak CY, Chew JLL, Lin CB, Neo S et al (2008) Epidemiology of diabetic foot problems and predictive factors for limb loss. J. Diabetes Complicat 22:77–82. CrossRefPubMedGoogle Scholar
  24. 24.
    Reveles KR, Duhon BM, Moore RJ, Hand EO, Howell CK (2016) Epidemiology of methicillin-resistant Staphylococcus aureus diabetic foot infections in a large academic hospital: implications for antimicrobial stewardship. PLoS One 11:e0161658CrossRefGoogle Scholar
  25. 25.
    Shore AC, Deasy EC, Slickers P, Brennan G, O’Connell B, Monecke S et al (2011) Detection of staphylococcal cassette chromosome mec type XI carrying highly divergent mecA, mecI, mecR1, blaZ, and ccr genes in human clinical isolates of clonal complex 130 methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55:3765–3773. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Duran N, Ozer B, Duran GG, Onlen Y, Demir C (2012) Antibiotic resistance genes & susceptibility patterns in staphylococci. Indian J Med Res 135:389–396PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kim G-Y, Lee CH (2015) Antimicrobial susceptibility and pathogenic genes of Staphylococcus aureus isolated from the oral cavity of patients with periodontitis. J Periodontal Implant Sci 45:223–228CrossRefGoogle Scholar
  28. 28.
    Vandendriessche S, Kadlec K, Schwarz S, Denis O (2011) Methicillin-susceptible Staphylococcus aureus ST398-t571 harbouring the macrolide-lincosamide-streptogramin B resistance gene erm(T) in Belgian hospitals. J Antimicrob Chemother 66:2455–2459. CrossRefPubMedGoogle Scholar
  29. 29.
    Reeve SM, Scocchera EW, G-Dayanadan N, Keshipeddy S, Krucinska J, Hajian B et al (2016) MRSA isolates from United States hospitals carry dfrG and dfrK resistance genes and succumb to propargyl-linked antifolates. Cell Chem Biol 23:1458–1467. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li L, Feng W, Zhang Z, Xue H, Zhao X (2015) Macrolide-lincosamide-streptogramin resistance phenotypes and genotypes of coagulase-positive Staphylococcus aureus and coagulase-negative staphylococcal isolates from bovine mastitis. BMC Vet Res 11:168. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Köck R, Ballhausen B, Bischoff M, Cuny C, Eckmanns T, Fetsch A et al (2014) MRSA als Erreger von Zoonosen in Deutschland. Berl Munch Tierarztl Wochenschr 127:384–398. CrossRefPubMedGoogle Scholar
  32. 32.
    Shokravi Z, Mehrad L, Ramazani A (2015) Detecting the frequency of aminoglycoside modifying enzyme encoding genes among clinical isolates of methicillin-resistant Staphylococcus aureus. Bioimpacts 5:87–91. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mahdiyoun SM, Kazemian H, Ahanjan M, Houri H, Goudarzi M (2016) Frequency of aminoglycoside-resistance genes in methicillin-resistant Staphylococcus aureus (MRSA) isolates from hospitalized patients. Jundishapur J Microbiol 9:e35052–e35052. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Petersen A, Stegger M, Heltberg O, Christensen J, Zeuthen A, Knudsen LK et al (2013) Epidemiology of methicillin-resistant <em>Staphylococcus aureus</em> carrying the novel <em>mecC</em> gene in Denmark corroborates a zoonotic reservoir with transmission to humans. Clin Microbiol Infect 19:E16–E22. CrossRefPubMedGoogle Scholar
  35. 35.
    Yıldız Ö, Çoban AY, Şener AG, Coşkuner SA, Bayramoğlu G, Güdücüoğlu H et al (2014) Antimicrobial susceptibility and resistance mechanisms of methicillin resistant Staphylococcus aureus isolated from 12 hospitals in Turkey. Ann Clin Microbiol Antimicrob 13:44. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Espadinha D, Faria NA, Miragaia M, Lito LM, Melo-Cristino J, de Lencastre H et al (2013) Extensive dissemination of methicillin-resistant Staphylococcus aureus (MRSA) between the hospital and the community in a country with a high prevalence of nosocomial MRSA. PLoS One 8:e59960CrossRefGoogle Scholar
  37. 37.
    Couto N, Belas A, Kadlec K, Schwarz S (2015) Clonal diversity , virulence patterns and antimicrobial and biocide susceptibility among human, animal and environmental MRSA in Portugal. J Antimicrob Chemother 2008:2483–2487. CrossRefGoogle Scholar
  38. 38.
    Shukla SK, Karow ME, Brady JM, Stemper ME, Kislow J, Moore N et al (2010) Virulence genes and genotypic associations in nasal carriage, community-associated methicillin-susceptible and methicillin-resistant USA400 Staphylococcus aureus isolates. J Clin Microbiol 48:3582–3592. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kateete DP, Namazzi S, Okee M, Okeng A, Baluku H, Musisi NL et al (2011) High prevalence of methicillin resistant Staphylococcus aureus in the surgical units of Mulago hospital in Kampala, Uganda. BMC Res Notes 4:326. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Xie X, Bao Y, Ouyang N, Dai X, Pan K, Chen B et al (2016) Molecular epidemiology and characteristic of virulence gene of community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus isolates in Sun Yat-sen Memorial hospital, Guangzhou, Southern China. BMC Infect Dis 16:339. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Nowrouzian FL, Dauwalder O, Meugnier H, Bes M, Etienne J, Lindberg E et al (2011) Adhesin and superantigen genes and the capacity of Staphylococcus aureus to colonize the infantile gut. J Infect Dis 204:714–721. CrossRefPubMedGoogle Scholar
  42. 42.
    Thompson TA, Brown PD (2017) Association between the agr locus and the presence of virulence genes and pathogenesis in Staphylococcus aureus using a Caenorhabditis elegans model. Int J Infect Dis 54:72–76. CrossRefPubMedGoogle Scholar
  43. 43.
    Azimian A, Najar-pirayeh S, Mirab-Samiee S, Naderi M (2012) Samples in Tehran-Iran and its correlation with polymorphism of specific accessory. Braz J Microbiol 2012:779–785CrossRefGoogle Scholar
  44. 44.
    Zhao C, Liu Y, Zhao M, Liu Y, Yu Y, Chen H et al (2012) Characterization of community acquired Staphylococcus aureus associated with skin and soft tissue infection in Beijing: high prevalence of PVL+ ST398. PLoS One 7:e38577CrossRefGoogle Scholar
  45. 45.
    Mendes RE, Deshpande LM, Costello AJ, Farrell DJ, Jones RN, Flamm RK (2015) Genotypic characterization of methicillin-resistant Staphylococcus aureus recovered at baseline from phase 3 pneumonia clinical trials for ceftobiprole. Microb Drug Resist 22:53–58. CrossRefPubMedGoogle Scholar
  46. 46.
    Li M, Guan M, Jiang XF, Yuan FY, Xu M, Zhang WZ et al (2004) Genetic polymorphism of the accessory gene regulator ( agr ) locus in Staphylococcus epidermidis and its association with pathogenicity. J Med Microbiol 53:545–549. CrossRefPubMedGoogle Scholar
  47. 47.
    Goudarzi M, Seyedjavadi SS, Nasiri MJ, Goudarzi H, Sajadi Nia R, Dabiri H (2017) Molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from patients with bacteremia based on MLST, SCCmec, spa, and agr locus types analysis. Microb Pathog 104:328–335. CrossRefPubMedGoogle Scholar
  48. 48.
    Ohkura T, Yamada K, Okamoto A, Baba H, Ike Y, Arakawa Y et al (2009) Nationwide epidemiological study revealed the dissemination of meticillin-resistant Staphylococcus aureus carrying a specific set of virulence-associated genes in Japanese hospitals. J Med Microbiol 58:1329–1336. CrossRefPubMedGoogle Scholar
  49. 49.
    Deasy EC, Brennan GI, Tecklenborg SC, Umeh C, Coleman DC, Shore AC (2019) A molecular epidemiological investigation of methicillin-susceptible Staphylococcus aureus causing bloodstream infections in Ireland, 2006–2017. Eur J Clin Microbiol Infect Dis 38:927–936. CrossRefGoogle Scholar
  50. 50.
    Cervantes-García E, García-González R, Salazar-Schettino P (2014) Características generales del Staphylococcus aureus. Rev Latinoam Patol Clín Med Lab 61:28–40Google Scholar
  51. 51.
    Saeed K, Gould I, Esposito S, Ahmad-Saeed N, Ahmed SS, Alp E et al (2018) Panton–Valentine leukocidin-positive Staphylococcus aureus: a position statement from the International Society of Chemotherapy. Int J Antimicrob Agents 51:16–25. doi:
  52. 52.
    Coelho C, Torres C, Radhouani H, Pinto L, Lozano C, Gómez-Sanz E et al (2011) Molecular detection and characterization of methicillin-resistant Staphylococcus aureus (MRSA) isolates from dogs in Portugal. Microb Drug Resist 17:333–337. CrossRefPubMedGoogle Scholar
  53. 53.
    Faria NA (2013) Miragaia M, de Lencastre Hermínia and TMLPC. Massive dissemination of methicillin resistant Staphylococcus aureus in bloodstream infections in a high MRSA prevalence country: establishment and diversification of EMRSA-15. Microb. Drug Resist 19:483–490. CrossRefGoogle Scholar
  54. 54.
    Simões RR, Aires-de-Sousa M, Conceição T, Antunes F, da Costa PM, de Lencastre H (2011) High prevalence of EMRSA-15 in Portuguese public buses: a worrisome finding. PLoS One 6:e17630CrossRefGoogle Scholar
  55. 55.
    Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M et al (2011) A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One 6:e17936CrossRefGoogle Scholar
  56. 56.
    Aires-de-Sousa M, Correia B, de Lencastre H, Collaborators MP (2008) Changing patterns in frequency of recovery of five methicillin-resistant Staphylococcus aureus clones in Portuguese hospitals: surveillance over a 16-year period. J Clin Microbiol 46:2912–2917. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Hetem DJ, Derde LPG, Empel J, Mroczkowska A, Kozin A, Hryniewicz W et al (2016) Molecular epidemiology of MRSA in 13 ICUs from eight European countries. J Antimicrob Chemother:45–52. CrossRefGoogle Scholar
  58. 58.
    Weber RE, Layer F, Fuchs S, Bender JK, Fiedler S, Werner G et al (2016) Complete genome sequences of two methicillin-sensitive Staphylococcus aureus isolates representing a population subset highly prevalent in human colonization. Genome Announc 4:e00716–e00716. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Mottola C, Semedo-Lemsaddek T, Mendes JJ, Melo-Cristino J, Tavares L, Cavaco-Silva P et al (2016) Molecular typing, virulence traits and antimicrobial resistance of diabetic foot staphylococci. J Biomed Sci 23:33. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Oliveira DC, Tomasz A, de Lencastre H (2002) Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resistant Staphylococcus aureus. Lancet Infect Dis 2:180–189. CrossRefPubMedGoogle Scholar
  61. 61.
    Sá-Leão R, Santos Sanches I, Dias D, Peres I, Barros RM, de Lencastre H (1999) Detection of an archaic clone of Staphylococcus aureus with low-level resistance to methicillin in a pediatric hospital in Portugal and in international samples: relics of a formerly widely disseminated strain? J Clin Microbiol 37:1913–1920CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Vanessa Silva
    • 1
    • 2
    • 3
    • 4
  • Francisco Almeida
    • 2
  • José António Carvalho
    • 5
  • Ana Paula Castro
    • 5
  • Eugénia Ferreira
    • 6
    • 7
  • Vera Manageiro
    • 6
    • 7
  • María Teresa Tejedor-Junco
    • 8
  • Manuela Caniça
    • 6
    • 7
  • Gilberto Igrejas
    • 2
    • 3
    • 4
  • Patrícia Poeta
    • 1
    • 4
    Email author
  1. 1.Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary SciencesUniversity of Trás-os-Montes and Alto Douro (UTAD)Vila RealPortugal
  2. 2.Department of Genetics and BiotechnologyUniversity of Trás-os-Montes and Alto DouroVila RealPortugal
  3. 3.Functional Genomics and Proteomics UnitUniversity of Trás-os-Montes and Alto Douro (UTAD)Vila RealPortugal
  4. 4.Associated Laboratory for Green Chemistry (LAQV-REQUIMTE)University NOVA of LisboaLisbonPortugal
  5. 5.Centro Hospitalar de Trás-os-Montes e Alto Douro E.P.EVila RealPortugal
  6. 6.National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious DiseasesNational Institute of Health Dr Ricardo JorgeLisbonPortugal
  7. 7.Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and TechnologiesOporto UniversityOportoPortugal
  8. 8.Research Institute of Biomedical and Health SciencesUniversity of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations