Advertisement

Clinical effectiveness of oral antimicrobial therapy for acute pyelonephritis caused by extended-spectrum β-lactamase-producing Enterobacteriales

  • Si-Ho Kim
  • Kyoung Ree Lim
  • Hyunju Lee
  • Kyungmin Huh
  • Sun Young Cho
  • Cheol-In Kang
  • Doo Ryeon Chung
  • Kyong Ran PeckEmail author
Original Article

Abstract

Infections caused by extended-spectrum β-lactamase-producing Enterobacteriales (ESBL-PE) are commonly treated with intravenous antibiotics. This study investigated whether oral antimicrobial therapy (OAT) is as effective as intravenous antimicrobial therapy (IVT) for acute pyelonephritis (APN) caused by ESBL-PE. A retrospective cohort of patients with APN caused by ESBL-PE was studied at a tertiary-care hospital from January 2014 through December 2016. The OAT group comprised patients treated with an appropriate oral antimicrobial agent following 7 days or less of IVT. The primary endpoint was treatment failure defined as clinical and/or microbiological failure. The secondary endpoint was length of hospital stay and recurrences of APN within 2 months and within 1 year. Propensity score matching and multivariable Cox proportional hazard modeling were used to minimize bias. Among 238 eligible cases, Escherichia coli (83.6%) was the most common pathogen. Sixty patients received OAT after a median of four days of appropriate IVT, and 178 patients completed treatment with IVT. Fluoroquinolones (58.3%) were the most commonly prescribed OAT, followed by trimethoprim-sulfamethoxazole and amoxicillin-clavulanate. OAT was not associated with treatment failure (adjusted OR 0.66; 95% CI 0.18–2.44) and hospitalization length was shorter in the OAT group (6.2 days versus 10.7 days; P < 0.01). APN recurrence caused by ESBL-PE infection within 2 months was not associated with OAT (adjusted HR 0.56; 95% CI 0.16–2.00). OAT reduced hospital stay without adverse effects on treatment outcome. OAT could be safely applied as a carbapenem-saving option in treatment of APN.

Keywords

Acute pyelonephritis Extended-spectrum β-lactamase Oral antimicrobial therapy Antibiotics stewardship 

Notes

Acknowledgments

The authors thank the Statistics and Data Center at Samsung Medical Center for their statistical support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The study was approved by the local research ethics committee (IRB number: 2018-05-089)

Supplementary material

10096_2019_3705_MOESM1_ESM.docx (60 kb)
ESM 1 (DOCX 60 kb)

References

  1. 1.
    Pitout JD, Laupland KB (2008) Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8(3):159–166.  https://doi.org/10.1016/S1473-3099(08)70041-0 CrossRefGoogle Scholar
  2. 2.
    McDanel J, Schweizer M, Crabb V, Nelson R, Samore M, Khader K, Blevins AE, Diekema D, Chiang HY, Nair R, Perencevich E (2017) Incidence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella infections in the United States: a systematic literature review. Infect Control Hosp Epidemiol 38(10):1209–1215.  https://doi.org/10.1017/ice.2017.156 CrossRefGoogle Scholar
  3. 3.
    Schwaber MJ, Carmeli Y (2007) Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother 60(5):913–920.  https://doi.org/10.1093/jac/dkm318 CrossRefGoogle Scholar
  4. 4.
    Grau S, Fondevilla E, Echeverria-Esnal D, Alcorta A, Limon E, Gudiol F, group VIP (2019) Widespread increase of empirical carbapenem use in acute care hospitals in Catalonia, Spain. Enferm Infecc Microbiol Clin 37(1):36–40.  https://doi.org/10.1016/j.eimc.2018.03.003 CrossRefGoogle Scholar
  5. 5.
    Versporten A, Zarb P, Caniaux I, Gros MF, Drapier N, Miller M, Jarlier V, Nathwani D, Goossens H, Global PP (2018) Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries: results of an internet-based global point prevalence survey. Lancet Glob Health 6(6):e619–e629.  https://doi.org/10.1016/S2214-109X(18)30186-4 CrossRefGoogle Scholar
  6. 6.
    Iversen K, Ihlemann N, Gill SU, Madsen T, Elming H, Jensen KT, Bruun NE, Hofsten DE, Fursted K, Christensen JJ, Schultz M, Klein CF, Fosboll EL, Rosenvinge F, Schonheyder HC, Kober L, Torp-Pedersen C, Helweg-Larsen J, Tonder N, Moser C, Bundgaard H (2019) Partial oral versus intravenous antibiotic treatment of endocarditis. N Engl J Med 380(5):415–424.  https://doi.org/10.1056/NEJMoa1808312 CrossRefGoogle Scholar
  7. 7.
    Park TY, Choi JS, Song TJ, Do JH, Choi SH, Oh HC (2014) Early oral antibiotic switch compared with conventional intravenous antibiotic therapy for acute cholangitis with bacteremia. Dig Dis Sci 59(11):2790–2796.  https://doi.org/10.1007/s10620-014-3233-0 CrossRefGoogle Scholar
  8. 8.
    Daver NG, Shelburne SA, Atmar RL, Giordano TP, Stager CE, Reitman CA, White AC Jr (2007) Oral step-down therapy is comparable to intravenous therapy for Staphylococcus aureus osteomyelitis. J Inf Secur 54(6):539–544.  https://doi.org/10.1016/j.jinf.2006.11.011 Google Scholar
  9. 9.
    Li HK, Rombach I, Zambellas R, Walker AS, McNally MA, Atkins BL, Lipsky BA, Hughes HC, Bose D, Kumin M, Scarborough C, Matthews PC, Brent AJ, Lomas J, Gundle R, Rogers M, Taylor A, Angus B, Byren I, Berendt AR, Warren S, Fitzgerald FE, Mack DJF, Hopkins S, Folb J, Reynolds HE, Moore E, Marshall J, Jenkins N, Moran CE, Woodhouse AF, Stafford S, Seaton RA, Vallance C, Hemsley CJ, Bisnauthsing K, Sandoe JAT, Aggarwal I, Ellis SC, Bunn DJ, Sutherland RK, Barlow G, Cooper C, Geue C, McMeekin N, Briggs AH, Sendi P, Khatamzas E, Wangrangsimakul T, Wong THN, Barrett LK, Alvand A, Old CF, Bostock J, Paul J, Cooke G, Thwaites GE, Bejon P, Scarborough M, Collaborators OT (2019) Oral versus intravenous antibiotics for bone and joint infection. N Engl J Med 380(5):425–436.  https://doi.org/10.1056/NEJMoa1710926 CrossRefGoogle Scholar
  10. 10.
    Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, Srinivasan A, Dellit TH, Falck-Ytter YT, Fishman NO, Hamilton CW, Jenkins TC, Lipsett PA, Malani PN, May LS, Moran GJ, Neuhauser MM, Newland JG, Ohl CA, Samore MH, Seo SK, Trivedi KK (2016) Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 62(10):e51–e77.  https://doi.org/10.1093/cid/ciw118 CrossRefGoogle Scholar
  11. 11.
    Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, Moran GJ, Nicolle LE, Raz R, Schaeffer AJ, Soper DE, Infectious Diseases Society of A, European Society for M, Infectious D (2011) International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 52(5):e103–e120.  https://doi.org/10.1093/cid/ciq257 CrossRefGoogle Scholar
  12. 12.
    Prakash V, Lewis JS 2nd, Herrera ML, Wickes BL, Jorgensen JH (2009) Oral and parenteral therapeutic options for outpatient urinary infections caused by enterobacteriaceae producing CTX-M extended-spectrum beta-lactamases. Antimicrob Agents Chemother 53(3):1278–1280.  https://doi.org/10.1128/AAC.01519-08 CrossRefGoogle Scholar
  13. 13.
    Fairley KF, Carson NE, Gutch RC, Leighton P, Grounds AD, Laird EC, McCallum PH, Sleeman RL, O'Keefe CM (1971) Site of infection in acute urinary-tract infection in general practice. Lancet 2(7725):615–618CrossRefGoogle Scholar
  14. 14.
    Seo MR, Kim SJ, Kim Y, Kim J, Choi TY, Kang JO, Wie SH, Ki M, Cho YK, Lim SK, Lee JS, Kwon KT, Lee H, Cheong HJ, Park DW, Ryu SY, Chung MH, Pai H (2014) Susceptibility of Escherichia coli from community-acquired urinary tract infection to fosfomycin, nitrofurantoin, and temocillin in Korea. J Korean Med Sci 29(8):1178–1181.  https://doi.org/10.3346/jkms.2014.29.8.1178 CrossRefGoogle Scholar
  15. 15.
    Cardoso T, Almeida M, Friedman ND, Aragao I, Costa-Pereira A, Sarmento AE, Azevedo L (2014) Classification of healthcare-associated infection: a systematic review 10 years after the first proposal. BMC Med 12:40.  https://doi.org/10.1186/1741-7015-12-40 CrossRefGoogle Scholar
  16. 16.
    Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40(5):373–383CrossRefGoogle Scholar
  17. 17.
    U.S. Department of Health and Human Services Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf. Accessed 1 Nov 2018
  18. 18.
    Yilmaz C, Ozcengiz G (2017) Antibiotics: pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochem Pharmacol 133:43–62.  https://doi.org/10.1016/j.bcp.2016.10.005 CrossRefGoogle Scholar
  19. 19.
    Kim SH, Huh K, Cho SY, Kang CI, Chung DR, Peck KR (2019) Factors associated with the recurrence of acute pyelonephritis caused by extended-spectrum beta-lactamase-producing Escherichia coli: the importance of infectious disease consultation. Diagn Microbiol Infect Dis 94(1):55–59.  https://doi.org/10.1016/j.diagmicrobio.2018.11.019 CrossRefGoogle Scholar
  20. 20.
    Kim SH, Oh S, Huh K, Cho SY, Kang CI, Chung DR, Peck KR (2019) Inappropriate empirical antibiotic therapy does not adversely affect the clinical outcomes of patients with acute pyelonephritis caused by extended-spectrum beta-lactamase-producing Enterobacteriales. Eur J Clin Microbiol Infect Dis 38(5):937–944.  https://doi.org/10.1007/s10096-019-03528-9 CrossRefGoogle Scholar
  21. 21.
    Auer S, Wojna A, Hell M (2010) Oral treatment options for ambulatory patients with urinary tract infections caused by extended-spectrum-beta-lactamase-producing Escherichia coli. Antimicrob Agents Chemother 54(9):4006–4008.  https://doi.org/10.1128/AAC.01760-09 CrossRefGoogle Scholar
  22. 22.
    Veve MP, Wagner JL, Kenney RM, Grunwald JL, Davis SL (2016) Comparison of fosfomycin to ertapenem for outpatient or step-down therapy of extended-spectrum beta-lactamase urinary tract infections. Int J Antimicrob Agents 48(1):56–60.  https://doi.org/10.1016/j.ijantimicag.2016.04.014 CrossRefGoogle Scholar
  23. 23.
    Malaisri C, Phuphuakrat A, Wibulpolprasert A, Santanirand P, Kiertiburanakul S (2017) A randomized controlled trial of sitafloxacin vs. ertapenem as a switch therapy after treatment for acute pyelonephritis caused by extended-spectrum beta-lactamase-producing Escherichia coli: a pilot study. J Infect Chemother 23(8):556–562.  https://doi.org/10.1016/j.jiac.2017.05.005 CrossRefGoogle Scholar
  24. 24.
    Beytur A, Yakupogullari Y, Oguz F, Otlu B, Kaysadu H (2015) Oral amoxicillin-clavulanic acid treatment in urinary tract infections caused by extended-spectrum Beta-lactamase-producing organisms. Jundishapur J Microbiol 8(1):e13792.  https://doi.org/10.5812/jjm.13792 Google Scholar
  25. 25.
    Cohen Stuart J, Leverstein-Van Hall M, Kortmann W, Verlind J, Mulder F, Scharringa J, Fluit A, Ekkelenkamp M (2018) Ceftibuten plus amoxicillin-clavulanic acid for oral treatment of urinary tract infections with ESBL producing E. coli and K. pneumoniae: a retrospective observational case-series. Eur J Clin Microbiol Infect Dis 37(10):2021–2025.  https://doi.org/10.1007/s10096-018-3338-z CrossRefGoogle Scholar
  26. 26.
    Tamma PD, Conley AT, Cosgrove SE, Harris AD, Lautenbach E, Amoah J, Avdic E, Tolomeo P, Wise J, Subudhi S, Han JH, Antibacterial Resistance Leadership G (2019) Association of 30-day mortality with oral step-down vs continued intravenous therapy in patients hospitalized with Enterobacteriaceae bacteremia. JAMA Intern Med.  https://doi.org/10.1001/jamainternmed.2018.6226
  27. 27.
    Itoh N, Hadano Y, Saito S, Myokai M, Nakamura Y, Kurai H (2018) Intravenous to oral switch therapy in cancer patients with catheter-related bloodstream infection due to methicillin-sensitive Staphylococcus aureus: a single-center retrospective observational study. PLoS One 13(11):e0207413.  https://doi.org/10.1371/journal.pone.0207413 CrossRefGoogle Scholar
  28. 28.
    Rattanaumpawan P, Thamlikitkul V (2017) Epidemiology and economic impact of health care-associated infections and cost-effectiveness of infection control measures at a Thai university hospital. Am J Infect Control 45(2):145–150.  https://doi.org/10.1016/j.ajic.2016.07.018 CrossRefGoogle Scholar
  29. 29.
    Steffens E, Quintens C, Derdelinckx I, Peetermans WE, Van Eldere J, Spriet I, Schuermans A (2019) Outpatient parenteral antimicrobial therapy and antibiotic stewardship: opponents or teammates? Infection 47(2):169–181.  https://doi.org/10.1007/s15010-018-1250-1 CrossRefGoogle Scholar
  30. 30.
    Loo VG, Bourgault AM, Poirier L, Lamothe F, Michaud S, Turgeon N, Toye B, Beaudoin A, Frost EH, Gilca R, Brassard P, Dendukuri N, Beliveau C, Oughton M, Brukner I, Dascal A (2011) Host and pathogen factors for Clostridium difficile infection and colonization. N Engl J Med 365(18):1693–1703.  https://doi.org/10.1056/NEJMoa1012413 CrossRefGoogle Scholar
  31. 31.
    Stevens V, Dumyati G, Fine LS, Fisher SG, van Wijngaarden E (2011) Cumulative antibiotic exposures over time and the risk of Clostridium difficile infection. Clin Infect Dis 53(1):42–48.  https://doi.org/10.1093/cid/cir301 CrossRefGoogle Scholar
  32. 32.
    Clinical and Laboratory Standards Institute (2019) Performance standards for antimicrobial susceptibility testing, 29th edn. Clinical and Laboratory Standards, WayneGoogle Scholar
  33. 33.
    Zelenitsky SA, Ariano RE (2010) Support for higher ciprofloxacin AUC 24/MIC targets in treating Enterobacteriaceae bloodstream infection. J Antimicrob Chemother 65(8):1725–1732.  https://doi.org/10.1093/jac/dkq211 CrossRefGoogle Scholar
  34. 34.
    Seok H, Cha MK, Kang CI, Cho SY, Kim SH, Ha YE, Chung DR, Peck KR, Song JH (2018) Failure of ciprofloxacin therapy in the treatment of community-acquired acute pyelonephritis caused by in-vitro susceptible Escherichia coli strain producing CTX-type extended-spectrum beta-lactamase. Infect Chemother 50(4):357–361.  https://doi.org/10.3947/ic.2018.50.4.357 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Si-Ho Kim
    • 1
  • Kyoung Ree Lim
    • 2
  • Hyunju Lee
    • 1
  • Kyungmin Huh
    • 1
  • Sun Young Cho
    • 1
  • Cheol-In Kang
    • 1
  • Doo Ryeon Chung
    • 1
  • Kyong Ran Peck
    • 1
    Email author
  1. 1.Division of Infectious Diseases, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulSouth Korea
  2. 2.Department of Medicine, College of MedicineKangwon National UniversityChuncheonSouth Korea

Personalised recommendations