Advertisement

Efficacy of cefoxitin versus carbapenem in febrile male urinary tract infections caused by extended spectrum beta-lactamase–producing Escherichia coli: a multicenter retrospective cohort study with propensity score analysis

  • O. Senard
  • M. Lafaurie
  • P. Lesprit
  • Y. Nguyen
  • X. Lescure
  • A. Therby
  • V. Fihman
  • N. Oubaya
  • R. LepeuleEmail author
Original Article
  • 38 Downloads

Abstract

Cefoxitin has demonstrated good in vitro activity against extended spectrum beta-lactamase (ESBL)–producing Escherichia coli (ESBL-Ec) and is regarded as a carbapenem-sparing beta-lactam alternative in urinary tract infections. Its efficacy has never been compared to carbapenems in male UTIs. Our study aimed to compare the clinical and microbiological efficacy of cefoxitin (FOX) and carbapenems (CP) in febrile M-UTI due to ESBL-Ec (F-M-UTI). We conducted a multicenter retrospective cohort study of patients with F-M-UTI treated with FOX or CP as definitive therapy, between January 2013 and June 2015, in six French acute care teaching hospitals. The clinical and microbiological efficacies of FOX and CP were compared using multivariable logistic regression models, adjusting for propensity scores. Of the 66 patients included, 23 patients in FOX group and 27 in CP group had clinical assessment at follow-up. Median follow-up after end of treatment was 63 days (interquartile range 26–114). Clinical success was observed for 17/23 (73.9%) and 22/27 (81.5%) patients and microbiological success for 11/19 (57.9%) and for 6/12 (50.0%) patients in FOX and CP groups respectively. We did not find any significant difference for clinical (OR = 0.90, 95% CI [0.12; 6.70]) neither microbiological (OR = 0.85, 95% CI [0.05; 14.00]) success between CP and FOX groups in univariate and multivariable models. In the FOX group, high dose with use of continuous infusion was associated with clinical success. These results add evidence that FOX is an effective alternative treatment to carbapenems for M-UTI caused by ESBL-Ec, particularly when high doses and continuous infusion are used.

Keywords

Cefoxitin Cephamycin Carbapenem sparing Urinary tract infection Prostatitis Extended spectrum beta-lactamase–producing Escherichia coli Continuous infusion 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All the procedures were in accordance with the 1964 Helsinki Declaration and its later amendments.

Informed consent

According to French Health Public Law (CSP Article L1121-1), this type of study did not require specific informed consent or ethics committee approval.

Supplementary material

10096_2019_3701_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 20 kb)

References

  1. 1.
    Etienne M, Chavanet P, Sibert L, Michel F, Levesque H, Lorcerie B, Doucet J, Pfitzenmeyer P, Caron F (2008) Acute bacterial prostatitis: heterogeneity in diagnostic criteria and management. Retrospective multicentric analysis of 371 patients diagnosed with acute prostatitis. BMC Infect Dis 8:12.  https://doi.org/10.1186/1471-2334-8-12 CrossRefGoogle Scholar
  2. 2.
    Charalabopoulos K, Karachalios G, Baltogiannis D, Charalabopoulos A, Giannakopoulos X, Sofikitis N (2003) Penetration of antimicrobial agents into the prostate. Chemotherapy 49(6):269–279.  https://doi.org/10.1159/000074526 CrossRefGoogle Scholar
  3. 3.
    Pitout JD, Laupland KB (2008) Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8(3):159–166CrossRefGoogle Scholar
  4. 4.
    Harris PN, Tambyah PA, Paterson DL (2015) Beta-lactam and beta-lactamase inhibitor combinations in the treatment of extended-spectrum beta-lactamase producing Enterobacteriaceae: time for a reappraisal in the era of few antibiotic options? Lancet Infect Dis 15(4):475–485.  https://doi.org/10.1016/s1473-3099(14)70950-8 CrossRefGoogle Scholar
  5. 5.
    Paterson DL, Ko WC, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, Mulazimoglu L, Trenholme G, Klugman KP, Bonomo RA, Rice LB, Wagener MM, McCormack JG, Yu VL (2004) Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum beta-lactamases. Clin Infect Dis 39(1):31–37CrossRefGoogle Scholar
  6. 6.
    Tamma PD, Rodriguez-Bano J (2017) The use of noncarbapenem beta-lactams for the treatment of extended-spectrum beta-lactamase infections. Clin Infect Dis 64(7):972–980.  https://doi.org/10.1093/cid/cix034 CrossRefGoogle Scholar
  7. 7.
    Caron F, Galperine T, Flateau C, Azria R, Bonacorsi S, Bruyere F, Cariou G, Clouqueur E, Cohen R, Doco-Lecompte T, Elefant E, Faure K, Gauzit R, Gavazzi G, Lemaitre L, Raymond J, Senneville E, Sotto A, Subtil D, Trivalle C, Merens A, Etienne M (2018) Practice guidelines for the management of adult community-acquired urinary tract infections. Med Mal Infect.  https://doi.org/10.1016/j.medmal.2018.03.005
  8. 8.
    Kosmidis J, Hamilton-Miller JM, Gilchrist JN, Kerry DW, Brumfitt W (1973) Cefoxitin, a new semi-synthetic cephamycin: an in-vitro and in-vivo comparison with cephalothin. Br Med J 4(5893):653–655CrossRefGoogle Scholar
  9. 9.
    Jacoby GA, Carreras I (1990) Activities of beta-lactam antibiotics against Escherichia coli strains producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother 34(5):858–862CrossRefGoogle Scholar
  10. 10.
    Lepeule R, Leflon-Guibout V, Vanjak D, Zahar JR, Lafaurie M, Besson C, Lefort A (2014) Clinical spectrum of urine cultures positive for ESBL-producing Escherichia coli in hospitalized patients and impact on antibiotic use. Med Mal Infect 44(11–12):530–534.  https://doi.org/10.1016/j.medmal.2014.09.004 CrossRefGoogle Scholar
  11. 11.
    Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40(5):373–383CrossRefGoogle Scholar
  12. 12.
    Matot I, Sprung CL (2001) Definition of sepsis. Intensive Care Med 27(Suppl 1):S3–S9CrossRefGoogle Scholar
  13. 13.
    Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, Briggs JP, Lamm W, Clark C, MacFarquhar J, Walton AL, Reller LB, Sexton DJ (2002) Health care--associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med 137(10):791–797CrossRefGoogle Scholar
  14. 14.
    European Manual of Clinical Microbiology (2012)Google Scholar
  15. 15.
    Bonnet RCJ, Chardon H, Chidiac C, Courvalin P, Dabernat H (2013) Recommendations of Antibiogram Committee. In: French Society for Microbiology, p 58Google Scholar
  16. 16.
    Garrec H, Drieux-Rouzet L, Golmard JL, Jarlier V, Robert J (2011) Comparison of nine phenotypic methods for detection of extended-spectrum beta-lactamase production by Enterobacteriaceae. J Clin Microbiol 49(3):1048–1057.  https://doi.org/10.1128/JCM.02130-10 CrossRefGoogle Scholar
  17. 17.
    Lepeule R, Ruppe E, Le P, Massias L, Chau F, Nucci A, Lefort A, Fantin B (2012) Cefoxitin as an alternative to carbapenems in a murine model of urinary tract infection due to Escherichia coli harboring CTX-M-15 type extended-spectrum beta-lactamase. Antimicrob Agents Chemother 2012:3Google Scholar
  18. 18.
    Pilmis B, Parize P, Zahar JR, Lortholary O (2014) Alternatives to carbapenems for infections caused by ESBL-producing Enterobacteriaceae. Eur J Clin Microbiol Infect Dis 33(8):1263–1265.  https://doi.org/10.1007/s10096-014-2094-y CrossRefGoogle Scholar
  19. 19.
    Kerneis S, Valade S, Geri G, Compain F, Lavollay M, Rostane H, Carbonnelle E, Mainardi JL (2015) Cefoxitin as a carbapenem-sparing antibiotic for infections caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect Dis (Lond) 47(11):789–795.  https://doi.org/10.3109/23744235.2015.1062133 CrossRefGoogle Scholar
  20. 20.
    Mambie A, Vuotto F, Poitrenaud D, Weyrich P, Cannesson O, Dessein R, Faure K, Guery B, Galperine T (2016) Cefoxitin: an alternative to carbapenems in urinary tract infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae. Med Mal Infect 46(4):215–219.  https://doi.org/10.1016/j.medmal.2016.04.008 CrossRefGoogle Scholar
  21. 21.
    Demonchy E, Courjon J, Ughetto E, Durand M, Risso K, Garraffo R, Roger PM (2018) Cefoxitin-based antibiotic therapy for extended-spectrum beta-lactamase-producing Enterobacteriaceae prostatitis: a prospective pilot study. Int J Antimicrob Agents 51(6):836–841.  https://doi.org/10.1016/j.ijantimicag.2018.01.008 CrossRefGoogle Scholar
  22. 22.
    Matsumura Y, Yamamoto M, Nagao M, Komori T, Fujita N, Hayashi A, Shimizu T, Watanabe H, Doi S, Tanaka M, Takakura S, Ichiyama S (2015) Multicenter retrospective study of cefmetazole and flomoxef for treatment of extended-spectrum-beta-lactamase-producing Escherichia coli bacteremia. Antimicrob Agents Chemother 59(9):5107–5113.  https://doi.org/10.1128/aac.00701-15 CrossRefGoogle Scholar
  23. 23.
    Fukuchi T, Iwata K, Kobayashi S, Nakamura T, Ohji G (2016) Cefmetazole for bacteremia caused by ESBL-producing enterobacteriaceae comparing with carbapenems. BMC Infect Dis 16(1):427.  https://doi.org/10.1186/s12879-016-1770-1 CrossRefGoogle Scholar
  24. 24.
    Pangon B, Bizet C, Bure A, Pichon F, Philippon A, Regnier B, Gutmann L (1989) In vivo selection of a cephamycin-resistant, porin-deficient mutant of Klebsiella pneumoniae producing a TEM-3 beta-lactamase. J Infect Dis 159(5):1005–1006CrossRefGoogle Scholar
  25. 25.
    Lee CH, Chu C, Liu JW, Chen YS, Chiu CJ, Su LH (2007) Collateral damage of flomoxef therapy: in vivo development of porin deficiency and acquisition of blaDHA-1 leading to ertapenem resistance in a clinical isolate of Klebsiella pneumoniae producing CTX-M-3 and SHV-5 beta-lactamases. J Antimicrob Chemother 60(2):410–413.  https://doi.org/10.1093/jac/dkm215 CrossRefGoogle Scholar
  26. 26.
    Schrogie JJ, Davies RO, Yeh KC, Rogers D, Holmes GI, Skeggs H, Martin CM (1978) Bioavailability and pharmacokinetics of cefoxitin sodium. J Antimicrob Chemother 4(B):69–78CrossRefGoogle Scholar
  27. 27.
    Guet-Revillet H, Emirian A, Groh M, Nebbad-Lechani B, Weiss E, Join-Lambert O, Bille E, Jullien V, Zahar JR (2014) Pharmacological study of cefoxitin as an alternative antibiotic therapy to carbapenems in treatment of urinary tract infections due to extended-spectrum-beta-lactamase-producing Escherichia coli. Antimicrob Agents Chemother 58(8):4899–4901.  https://doi.org/10.1128/aac.02509-14 CrossRefGoogle Scholar
  28. 28.
    Lee CH, Su LH, Tang YF, Liu JW (2006) Treatment of ESBL-producing Klebsiella pneumoniae bacteraemia with carbapenems or flomoxef: a retrospective study and laboratory analysis of the isolates. J Antimicrob Chemother 58(5):1074–1077.  https://doi.org/10.1093/jac/dkl381 CrossRefGoogle Scholar
  29. 29.
    Perez F, Bonomo RA (2015) Editorial commentary: bloodstream infection caused by extended-spectrum beta-lactamase-producing gram-negative bacteria: how to define the best treatment regimen? Clin Infect Dis 60(9):1326–1329.  https://doi.org/10.1093/cid/civ007 Google Scholar
  30. 30.
    Austin PC (2011) An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar Behav Res 46(3):399–424.  https://doi.org/10.1080/00273171.2011.568786 CrossRefGoogle Scholar
  31. 31.
    Woerther PL, Lepeule R, Burdet C, Decousser JW, Ruppe E, Barbier F (2018) Carbapenems and alternative beta-lactams for the treatment of infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae: what impact on intestinal colonisation resistance? Int J Antimicrob Agents 52(6):762–770.  https://doi.org/10.1016/j.ijantimicag.2018.08.026 CrossRefGoogle Scholar
  32. 32.
    Armand-Lefevre L, Angebault C, Barbier F, Hamelet E, Defrance G, Ruppe E, Bronchard R, Lepeule R, Lucet JC, El Mniai A, Wolff M, Montravers P, Plesiat P, Andremont A (2013) Emergence of imipenem-resistant gram-negative bacilli in intestinal flora of intensive care patients. Antimicrob Agents Chemother 57(3):1488–1495CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • O. Senard
    • 1
  • M. Lafaurie
    • 2
  • P. Lesprit
    • 3
  • Y. Nguyen
    • 4
  • X. Lescure
    • 5
  • A. Therby
    • 6
  • V. Fihman
    • 7
    • 8
  • N. Oubaya
    • 9
    • 10
  • R. Lepeule
    • 1
    • 8
    Email author
  1. 1.Unité Transversale de Traitement des Infections, Département de microbiologie, DHU-VICAPHP hôpital Henri MondorCréteilFrance
  2. 2.Unité transversale d’infectiologieHôpital Saint Louis, APHPParisFrance
  3. 3.Service de biologie cliniqueHôpital FochSuresnesFrance
  4. 4.Service de médecine interneHôpital Beaujon, APHPClichyFrance
  5. 5.Service de Maladies Infectieuses et TropicalesHôpital Bichat-Claude Bernard, APHPParisFrance
  6. 6.Service de médecine interne et de maladies infectieusesCentre hospitalier de VersaillesLe ChesnayFrance
  7. 7.Laboratoire de bactériologie et hygiène hospitalière, Département de microbiologie, DHU-VICAPHP hôpital Henri MondorCreteilFrance
  8. 8.EA 7380 Dynamyc, Ecole nationale vétérinaire d’Alfort, IMRBUniversité Paris Est CréteilCreteilFrance
  9. 9.Service de santé publiqueAPHP hôpital Henri MondorCreteilFrance
  10. 10.UPEC, DHU A-TVB, IMRB-EA 7376 CEpiA (Clinical Epidemiology And Ageing Unit)Paris-Est UniversityCreteilFrance

Personalised recommendations