Advertisement

Detection of sexually transmitted disease–causing pathogens from direct clinical specimens with the multiplex PCR-based STD Direct Flow Chip Kit

  • Antonio Barrientos-Durán
  • Adolfo de Salazar
  • Marta Alvarez-Estévez
  • Ana Fuentes-López
  • Beatriz Espadafor
  • Federico GarciaEmail author
Original Article
  • 121 Downloads

Abstract

Pathogens causing sexually transmitted diseases (STDs) include viruses, bacteria, and parasites. The ability to rapidly and efficiently detect these pathogens in a single reaction still remains a health challenge. The aim of this study was to evaluate the clinical reliability and accuracy of the STD Direct Flow Chip Kit (Vitro, IVD-EC approved), which can simultaneously detect up to 9 different species of STD pathogens at once. This kit enables direct analysis—direct-PCR—of clinical specimens (urine, semen, endocervical, urethral, nasopharyngeal, and perianal swabs) without DNA purification for the following pathogens: Chlamydia trachomatis (serovars A-K and L1-L3), Haemophilus ducreyi, Herpes Simplex Virus (Types I and II), Mycoplasma genitalium, Mycoplasma hominis, Neisseria gonorrhoeae, Treponema pallidum, Trichomonas vaginalis, and Ureaplasma. The Anyplex™ II STI-7 Detection Kit (Seegene, IVD-EC) was used as the reference’s method. Existing discordances were resolved using either a third molecular assay or DNA sequencing. Clinical performance was evaluated at two different stages: (i) from purified DNA of three hundred and fifty-eight clinical specimens with a diagnostic sensitivity (SE) and specificity (SP) of 99.4% and 100%, respectively, and an agreement of 99% (kappa index, κ = 0.97) with the reference’s method and; (ii) by direct-PCR from six hundred and thirty-three specimens rendering SE, SP, and agreement values of 98.4%, 99.9%, and 98.0% (κ = 0.95), respectively. The STD Direct Flow Chip Kit constitutes a promising alternative to routine procedures in diagnostic, allowing direct analysis of specimens and enabling the detection of a broad panel of pathogens.

Keywords

Clinical specimens Direct analysis DNA: DNA hybridization Multiplex-PCR based Sexually transmitted diseases 

Notes

Acknowledgments

The results published here are part of the thesis´s work, of the PhD candidate Adolfo de Salazar, in the Biomedicine Doctoral Program of the University of Granada.

Compliance with ethical standards

Vitro provided kits and reagents for testing. The Ethics Committee of the Hospital San Cecilio approved the study protocol. All the clinical specimens were received in the Microbiology laboratory for routine diagnostics and anonymized prior testing.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    World Health Organization (2016) Report on global sexually transmitted infection surveillance 2015. WHO. Available in: http://www.who.int/iris/handle/10665/249553. Accessed May 2018
  2. 2.
    Gewirtzman A, Bobrick L, Conner K, Tyring SK (2011) Epidemiology of sexually transmitted infections. In: Gorss G, Tyring SK (eds) Sexually transmitted infections and sexually transmitted diseases. Springer, New YorkGoogle Scholar
  3. 3.
    Global incidence and prevalence of selected curable sexually transmitted infections 2008. World Health Organization, Geneva, 2012Google Scholar
  4. 4.
    Taylor-Robinson D, Jensen JS (2011) Mycoplasma genitalium: from chrysalis to multicolored butterfly. Clin Microbiol Rev 24:498–514CrossRefGoogle Scholar
  5. 5.
    Sethi S, Singh G, Samanta P, Sharma M (2012) Mycoplasma genitalium: an emerging sexually transmitted pathogen. Indian J Med Res 136:942–955PubMedPubMedCentralGoogle Scholar
  6. 6.
    Larsen B, Hwang J (2010) Mycoplasma, Ureaplasma and adverse pregnancy outcomes: a fresh look. Infect Dis Obstet Gynecol 2010:1–7Google Scholar
  7. 7.
    Levett PN, Brandt K, Olenius K, Brown C, Montgomery K, Horsman GB (2008) Evaluation of three automated nucleic acid amplification Systems for the detection of Chlamydia trachomatis and Neisseria gonorrhoeae in first-void urine specimens. J Clin Microbiol 46:2109–2111CrossRefGoogle Scholar
  8. 8.
    Cheng A, Qian Q, Kirby JE (2011) Evaluation of the Abbott RealTime CT/NG assay in comparison to the Roche Cobas Amplicor CT/NG assay. J Clin Microbiol 49:1294–1300CrossRefGoogle Scholar
  9. 9.
    Shipitsyna E, Zolotoverkhaya E, Chen CY, Chi KH, Grigoryev A, Savicheva A et al (2013) Evaluation of polymerase chain reaction assays for the diagnosis of Trichomonas vaginalis infection in Russia. J Eur Acad Dermatol Venereol 27:e217–e223CrossRefGoogle Scholar
  10. 10.
    Choe HS, Lee DS, Lee S-J, Hong S-H, Park DC, Lee M-K et al (2013) Performance of Anyplex™ II multiplex real-time PCR for the diagnosis of seven sexually transmitted infections: comparison with currently available methods. Int J Infect Dis 17:1134–1140CrossRefGoogle Scholar
  11. 11.
    Berçot B, Amarsy R, Goubard A, Aparicio C, Loeung HU, Segouin C et al (2015) Assessment of co-infection of sexually transmitted pathogen microbes by use of the Anyplex™ II STI-7 Molecular Kit. J Clin Microbiol 53:991–993CrossRefGoogle Scholar
  12. 12.
    Fernández G, Martró E, González V, Saludes V, Bascuñana E, Marcó C et al (2016) Usefulness of a novel multiplex real-time PCR assay for the diagnosis of sexually-transmitted infections. Enferm Infecc Microbiol Clin 34:471–476CrossRefGoogle Scholar
  13. 13.
    Wu HN, Nakura Y, Motooka D, Nakamura S, Nishiumi F, Ishino S et al (2014) Complete genome sequence of Ureaplasma parvum Serovar 3 strain SV3F4, isolated in Japan. Genome Announc 2:e00256–e00214PubMedPubMedCentralGoogle Scholar
  14. 14.
    Mao M, Liu HL (2015) Genetic diversity of Trichomonas vaginalis clinical isolates from Henan province in Central China. Pathog Glob Health 109:242–246CrossRefGoogle Scholar
  15. 15.
    Pillay A, Katz SS, Abrams AJ, Ballard RC, Simpson SV, Taleo F et al (2016) Complete genome sequences of 11 Haemophilus ducreyi isolates from children with cutaneous lesions in Vanuatu and Ghana. Genome Announc 4:e00459–e00416CrossRefGoogle Scholar
  16. 16.
    Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46CrossRefGoogle Scholar
  17. 17.
    Bergeri I, Michel R, Boutin J-B (2002) Pour tout savoir ou presque sur le coefficient Kappa. Med Trop 62:634–636Google Scholar
  18. 18.
    Ghazi Saeedi K, Fateminasab F, Vatani SH, Anzimi Y, Bakhshandenosrat S, Mohamadi M (2008) Compare two methods prostatic massage and urine initial drop sample in isolates of Mycoplasma hominis and Ureaplasma urealyticum in urinary tract. J Lab Med 2:15–18Google Scholar
  19. 19.
    Kong F, Ma Z, James G, Gordon S, Gilbert GL (2000) Species identification and subtyping of Ureaplasma parvum and Ureaplasma urealyticum using PCR-based assays. J Clin Microbiol 38:1175–1179CrossRefGoogle Scholar
  20. 20.
    Ollikainen J, Heiskanen-Kosma T, Korppi M, Katila ML, Heinonen K (1998) Clinical relevance of Ureaplasma urealyticum colonization in preterm infants. Acta Paediatr 87:1075–1078CrossRefGoogle Scholar
  21. 21.
    Beeton ML, Spiller OB (2017) Antibiotic resistance among Ureaplasma spp. isolates: cause for concern? J Antimicrob Chemother 72:330–337CrossRefGoogle Scholar
  22. 22.
    Horner P, Donders G, Cusini M, Gomberg M, Jensen JS, Unemo M (2018) Should we be testing for urogenital Mycoplasma hominis, Ureaplasma parvum and Ureaplasma urealyticum in men and women? – a position statement from the European STI Guidelines Editorial Board. J Eur Acad Dermatol Venereol 32:1845–1851CrossRefGoogle Scholar
  23. 23.
    González-Beiras C, Marks M, Chen CY, Roberts S, Mitjà O (2016) Epidemiology of Haemophilus ducreyi infections. Emerg Infect Dis 22:1–8CrossRefGoogle Scholar
  24. 24.
    Bruisten SM, Cairo I, Fennema H, Pijl A, Buimer M, Peerbooms PG et al (2001) Diagnosing genital ulcer disease in a clinic for sexually transmitted diseases in Amsterdam, the Netherlands. J Clin Microbiol 39:601–605CrossRefGoogle Scholar
  25. 25.
    Herring A, Ballard R, Mabey D, Peeling RW (2006) Evaluation of rapid diagnostic tests: chlamydia and gonorrhoea. Nat Rev Microbiol 4:S41–S48CrossRefGoogle Scholar
  26. 26.
    Banoo S, Bell D, Bossuyt P, Herring A, Mabey D, Poole F et al (2010) Evaluation of diagnostic tests for infectious diseases: general principles. Nat Rev Microbiol 8:S17–S12CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Servicio de Microbiología. Instituto de Investigación ibs.GRANADAHospital Universitario Clínico San CecilioGranadaSpain
  2. 2.Servicio de Dermatología. Centro de ETS.Hospital Universitario Virgen de las NievesGranadaSpain

Personalised recommendations