Advertisement

Serological and molecular rapid diagnostic tests for Toxoplasma infection in humans and animals

Abstract

Infection by Toxoplasma gondii is prevalent worldwide. The parasite can infect a broad spectrum of vertebrate hosts, but infection of fetuses and immunocompromised patients is of particular concern. Easy-to-perform, robust, and highly sensitive and specific methods to detect Toxoplasma infection are important for the treatment and management of patients. Rapid diagnostic methods that do not sacrifice the accuracy of the assay and give reproducible results in a short time are highly desirable. In this context, rapid diagnostic tests (RDTs), especially with point-of-care (POC) features, are promising diagnostic methods in clinical microbiology laboratories, especially in areas with minimal laboratory facilities. More advanced methods using microfluidics and sensor technology will be the future trend. In this review, we discuss serological and molecular-based rapid diagnostic tests for detecting Toxoplasma infection in humans as well as animals.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    Liu Q, Wang Z-D, Huang S-Y, Zhu X-Q (2015) Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasit Vectors 8(1):292

  2. 2.

    McAuley JB (2014) Congenital toxoplasmosis. Journal of the Pediatric Infectious Diseases Society 3(suppl_1):S30–S35

  3. 3.

    Fontes AA, Carvalho SAdS, Andrade GMQd, Carellos EV, Romanelli RC, Resende LMd (2019) Study of brainstem auditory evoked potentials in early diagnosis of congenital toxoplasmosis. Braz J Otorhinolaryngol 85(4):447-455

  4. 4.

    Mitsuka-Breganó R, Lopes-Mori FMR, Navarro IT (2010) Toxoplasmose adquirida na gestação e congênita: vigilância em saúde, diagnóstico, tratamento e condutas. EDUEL: https://doi.org/10.7476/9788572166768

  5. 5.

    Wallon M, Peyron F (2018) Congenital toxoplasmosis: a plea for a neglected disease. Pathogens 7(1): E25

  6. 6.

    Avelino MM, Amaral WN, Rodrigues IM, Rassi AR, Gomes MB, Costa TL, Castro AM (2014) Congenital toxoplasmosis and prenatal care state programs. BMC Infect Dis 14:33

  7. 7.

    Prusa A-R, Kasper DC, Sawers L, Walter E, Hayde M, Stillwaggon E (2017) Congenital toxoplasmosis in Austria: prenatal screening for prevention is cost-saving. PLoS Negl Trop Dis 11(7):e0005648

  8. 8.

    Peyron F, Mc Leod R, Ajzenberg D, Contopoulos-Ioannidis D, Kieffer F, Mandelbrot L, Sibley LD, Pelloux H, Villena I, Wallon M, Montoya JG (2017) Congenital toxoplasmosis in France and the United States: one parasite, two diverging approaches. PLoS Negl Trop Dis 11(2):e0005222

  9. 9.

    Lopes-Mori FMR, Mitsuka-Breganó R, Bittencourt LHFB, Dias RCF, Gonçalves DD, Capobiango JD, Reiche EMV, Morimoto HK, Freire RL, Navarro IT (2013) Gestational toxoplasmosis in Paraná State, Brazil: prevalence of IgG antibodies and associated risk factors. Braz J Infect Dis 17:405–409

  10. 10.

    Mele A, Paterson PJ, Prentice HG, Leoni P, Kibbler CC (2002) Toxoplasmosis in bone marrow transplantation: a report of two cases and systematic review of the literature. Bone Marrow Transplant 29:691

  11. 11.

    Hosseininejad Z, Sharif M, Sarvi S, Amouei A, Hosseini SA, Nayeri Chegeni T, Anvari D, Saberi R, Gohardehi S, Mizani A, Sadeghi M, Daryani A (2018) Toxoplasmosis seroprevalence in rheumatoid arthritis patients: a systematic review and meta-analysis. PLoS Negl Trop Dis 12(6):e0006545

  12. 12.

    Machala L, Kodym P, Maly M, Geleneky M, Beran O, Jilich D (2015) Toxoplasmosis in immunocompromised patients. Epidemiol Mikrobiol Imunol 64(2):59–65

  13. 13.

    Bowen LN, Smith B, Reich D, Quezado M, Nath A (2016) HIV-associated opportunistic CNS infections: pathophysiology, diagnosis and treatment. Nat Rev Neurol 12:662

  14. 14.

    Dumetre A, Le Bras C, Baffet M, Meneceur P, Dubey JP, Derouin F, Duguet JP, Joyeux M, Moulin L (2008) Effects of ozone and ultraviolet radiation treatments on the infectivity of Toxoplasma gondii oocysts. Vet Parasitol 153(3–4):209–213

  15. 15.

    Baldursson S, Karanis P (2011) Waterborne transmission of protozoan parasites: review of worldwide outbreaks - an update 2004-2010. Water Res 45(20):6603–6614

  16. 16.

    Blader IJ, Coleman BI, Chen C-T, Gubbels M-J (2015) Lytic cycle of Toxoplasma gondii: 15 years later. Annu Rev Microbiol 69(1):463–485

  17. 17.

    Giadinis ND, Lafi SQ, Ioannidou E, Papadopoulos E, Terpsidis K, Karanikolas G, Petridou EJ, Brozos C, Karatzias H (2013) Reduction of the abortion rate due to toxoplasma in 3 goat herds following administration of sulfadimidine. Can Vet J 54(11):1080–1082

  18. 18.

    Anastasia D, Elias P, Nikolaos P, Charilaos K, Nektarios G (2013) Toxoplasma gondii and Neospora caninum seroprevalence in dairy sheep and goats mixed stock farming. Vet Parasitol 198(3):387–390

  19. 19.

    Dubey JP (2009) Toxoplasmosis in pigs—the last 20 years. Vet Parasitol 164(2):89–103

  20. 20.

    Dubey JP (2009) Toxoplasmosis in sheep—the last 20 years. Vet Parasitol 163(1):1–14

  21. 21.

    Esteban-Redondo I, Maley SW, Thomson K, Nicoll S, Wright S, Buxton D, Innes EA (1999) Detection of T. gondii in tissues of sheep and cattle following oral infection. Vet Parasitol 86(3):155–171

  22. 22.

    Guigue N, Menotti J, Hamane S, Derouin F, Garin YJ (2014) Performance of the BioPlex 2200 flow immunoassay in critical cases of serodiagnosis of toxoplasmosis. Clin Vaccine Immunol 21(4):496–500

  23. 23.

    McPartlin DA, O'Kennedy RJ (2014) Point-of-care diagnostics, a major opportunity for change in traditional diagnostic approaches: potential and limitations. Expert Rev Mol Diagn 14(8):979–998

  24. 24.

    Mabey D, Peeling RW, Ustianowski A, Perkins MD (2004) Diagnostics for the developing world. Nat Rev Microbiol 2:231

  25. 25.

    Weerakoon KG, McManus DP (2016) Cell-free DNA as a diagnostic tool for human parasitic infections. Trends Parasitol 32(5):378–391

  26. 26.

    Ricciardi A, Ndao M (2014) Diagnosis of parasitic infections: what’s going on? J Biomol Screen 20(1):6–21

  27. 27.

    Peeling RW, Mabey D (2010) Point-of-care tests for diagnosing infections in the developing world. Clin Microbiol Infect 16(8):1062–1069

  28. 28.

    Banoo S, Bell D, Bossuyt P, Herring A, Mabey D, Poole F, Smith PG, Sriram N, Wongsrichanalai C, Linke R, O'Brien R, Perkins M, Cunningham J, Matsoso P, Nathanson CM, Olliaro P, Peeling RW, Ramsay A (2006) Evaluation of diagnostic tests for infectious diseases: general principles. Nat Rev Microbiol 4:S21

  29. 29.

    Dard C, Fricker-Hidalgo H, Brenier-Pinchart MP, Pelloux H (2016) Relevance of and new developments in serology for toxoplasmosis. Trends Parasitol 32(6):492–506

  30. 30.

    Holford TR, Davis F, Higson SP (2012) Recent trends in antibody based sensors. Biosens Bioelectron 34(1):12–24

  31. 31.

    Meng K, Sun W, Zhao P, Zhang L, Cai D, Cheng Z, Guo H, Liu J, Yang D, Wang S, Chai T (2014) Development of colloidal gold-based immunochromatographic assay for rapid detection of Mycoplasma suis in porcine plasma. Biosens Bioelectron 55:396–399

  32. 32.

    Nakayama T, Zhao J, Takeuchi D, Kerdsin A, Chiranairadul P, Areeratana P, Loetthong P, Pienpringam A, Akeda Y, Oishi K (2014) Colloidal gold-based immunochromatographic strip test compromising optimised combinations of anti-S. suis capsular polysaccharide polyclonal antibodies for detection of Streptococcus suis. Biosens Bioelectron 60:175–179

  33. 33.

    Peng D, Hu S, Hua Y, Xiao Y, Li Z, Wang X, Bi D (2007) Comparison of a new gold-immunochromatographic assay for the detection of antibodies against avian influenza virus with hemagglutination inhibition and agar gel immunodiffusion assays. Vet Immunol Immunopathol 117(1):17–25

  34. 34.

    Begeman IJ, Lykins J, Zhou Y, Lai BS, Levigne P, El Bissati K, Boyer K, Withers S, Clouser F, Noble AG, Rabiah P, Swisher CN, Heydemann PT, Contopoulos-Ioannidis DG, Montoya JG, Maldonado Y, Ramirez R, Press C, Stillwaggon E, Peyron F, McLeod R (2017) Point-of-care testing for Toxoplasma gondii IgG/IgM using Toxoplasma ICT IgG-IgM test with sera from the United States and implications for developing countries. PLoS Negl Trop Dis 11(6):e0005670

  35. 35.

    Gomez CA, Budvytyte LN, Press C, Zhou L, McLeod R, Maldonado Y, Montoya JG, Contopoulos-Ioannidis DG (2018) Evaluation of three point-of-care tests for detection of toxoplasma immunoglobulin IgG and IgM in the United States: proof of concept and challenges. Open Forum Infect Dis 5(10):ofy215

  36. 36.

    Song KJ, Yang Z, Chong CK, Kim JS, Lee KC, Kim TS, Nam HW (2013) A rapid diagnostic test for toxoplasmosis using recombinant antigenic N-terminal half of SAG1 linked with intrinsically unstructured domain of gra2 protein. Korean J Parasitol 51(5):503–510

  37. 37.

    Huang X, Xuan X, Hirata H, Yokoyama N, Xu L, Suzuki N, Igarashi I (2004) Rapid immunochromatographic test using recombinant SAG2 for detection of antibodies against Toxoplasma gondii in cats. J Clin Microbiol 42(1):351–353

  38. 38.

    Wang Y-H, Li X-R, Wang G-X, Yin H, Cai X-P, Fu B-Q, Zhang D-L (2011) Development of an immunochromatographic strip for the rapid detection of Toxoplasma gondii circulating antigens. Parasitol Int 60(1):105–107

  39. 39.

    Luo J, Sun H, Zhao X, Wang S, Zhuo X, Yang Y, Chen X, Yao C, Du A (2018) Development of an immunochromatographic test based on monoclonal antibodies against surface antigen 3 (TgSAG3) for rapid detection of Toxoplasma gondii. Vet Parasitol 252:52–57

  40. 40.

    Chong CK, Jeong W, Kim HY, An DJ, Jeoung HY, Ryu JE, Ko AR, Kim YJ, Hong SJ, Yang Z, Nam HW (2011) Development and clinical evaluation of a rapid serodiagnostic test for toxoplasmosis of cats using recombinant SAG1 antigen. Korean J Parasitol 49(3):207–212

  41. 41.

    Chapey E, Wallon M, Peyron F (2017) Evaluation of the LDBIO point of care test for the combined detection of toxoplasmic IgG and IgM. Clin Chim Acta 464:200–201

  42. 42.

    Mahinc C, Flori P, Delaunay E, Guillerme C, Charaoui S, Raberin H, Hafid J, L'Ollivier C (2017) Evaluation of a new immunochromatography technology test (LDBio Diagnostics) to detect Toxoplasma IgG and IgM: comparison with the routine architect technique. J Clin Microbiol 55(12):3395–3404

  43. 43.

    Pietkiewicz H, Hiszczyńska-Sawicka E, Kur J, Petersen E, Nielsen HV, Stankiewicz M, Andrzejewska I, Myjak P (2004) Usefulness of Toxoplasma gondii-specific recombinant antigens in serodiagnosis of human toxoplasmosis. J Clin Microbiol 42(4):1779–1781

  44. 44.

    Abdelbaset AE, Alhasan H, Salman D, Karram MH, Ellah Rushdi MA, Xuenan X, Igarashi M (2017) Evaluation of recombinant antigens in combination and single formula for diagnosis of feline toxoplasmosis. Exp Parasitol 172:1–4

  45. 45.

    Kotresha D, Noordin R (2010) Recombinant proteins in the diagnosis of toxoplasmosis. APMIS 118(8):529–542

  46. 46.

    Holec-Gąsior L (2013) Toxoplasma gondii recombinant antigens as tools for serodiagnosis of human toxoplasmosis – the current status of studies. Clin Vaccine Immunol

  47. 47.

    Mirzadeh A, Saadatnia G, Golkar M, Babaie J, Noordin R (2017) Production of refolded Toxoplasma gondii recombinant SAG1-related sequence 3 (SRS3) and its use for serodiagnosis of human toxoplasmosis. Protein Expr Purif 133:66–74

  48. 48.

    Grzybowski MM, Gatkowska JM, Dziadek B, Dzitko K, Długońska H (2015) Human toxoplasmosis: a comparative evaluation of the diagnostic potential of recombinant Toxoplasma gondii ROP5 and ROP18 antigens. J Med Microbiol 64(10):1201–1207

  49. 49.

    Mercier C, Delauw M-F, Pelloux H, Fricker-Hidalgo H (2017) Recombinant GRA antigens and the use of same for early diagnosis of toxoplasmosis U.S. Patent 9:658-227

  50. 50.

    Béla SR, Oliveira Silva DA, Cunha-Júnior JP, Pirovani CP, Chaves-Borges FA, Reis de Carvalho F, Carrijo de Oliveira T, Mineo JR (2008) Use of SAG2A recombinant Toxoplasma gondii surface antigen as a diagnostic marker for human acute toxoplasmosis: analysis of titers and avidity of IgG and IgG1 antibodies. Diagn Microbiol Infect Dis 62(3):245–254

  51. 51.

    Kim YH, Lee J, Ahn S, Kim TS, Hong SJ, Chong CK, Ahn HJ, Nam HW (2017) High seroprevalence of toxoplasmosis detected by RDT among the residents of Seokmo-do (Island) in Ganghwa-Gun, Incheon City, Korea. Korean J Parasitol 55(1):9–13

  52. 52.

    Terkawi MA, Kameyama K, Rasul NH, Xuan X, Nishikawa Y (2013) Development of an immunochromatographic assay based on dense granule protein 7 for serological detection of Toxoplasma gondii infection. Clin Vaccine Immunol 20(4):596–601

  53. 53.

    Morovati H, Seyyed Tabaei SJ, Gholamzad M, Omidfar K, Ahmadi A, Arab Mazar Z, Eshaghi A, Sheikhsofla F (2019) Development of a lateral flow immunoassay using recombinant dense granular antigen (GRA) 7 to detect anti-Toxoplasma gondii IgG antibodies. Arch Razi Inst 74(1):39–49

  54. 54.

    Jiang W, Liu Y, Chen Y, Yang Q, Chun P, Yao K, Han X, Wang S, Yu S, Liu Y, Wang Q (2015) A novel dynamic flow immunochromatographic test (DFICT) using gold nanoparticles for the serological detection of Toxoplasma gondii infection in dogs and cats. Biosens Bioelectron 72:133–139

  55. 55.

    Shen C, Cheng A, Wang M, Sun K, Jia R, Sun T, Zhang N, Zhu D, Luo Q, Zhou Y, Chen X (2010) Development and evaluation of an immunochromatographic strip test based on the recombinant UL51 protein for detecting antibody against duck enteritis virus. Virol J 7(1):268

  56. 56.

    Liu E, Eisenbarth GS (2007) Accepting clocks that tell time poorly: fluid-phase versus standard ELISA autoantibody assays. Clin Immunol 125(2):120–126

  57. 57.

    Burbelo PD, Ching KH, Bush ER, Han BL, Iadarola MJ (2010) Antibody-profiling technologies for studying humoral responses to infectious agents. Expert Rev Vaccines 9(6):567–578

  58. 58.

    Burbelo PD, Ching KH, Bren KE, Iadarola MJ (2011) Searching for biomarkers: humoral response profiling with luciferase immunoprecipitation systems. Expert Rev Proteomics 8(3):309–316

  59. 59.

    Burbelo PD, Lebovitz EE, Notkins AL (2015) Luciferase immunoprecipitation systems for measuring antibodies in autoimmune and infectious diseases. Transl Res 165(2):325–335

  60. 60.

    Burbelo PD, Gunti S, Keller JM, Morse CG, Deeks SG, Lionakis MS, Kapoor A, Li Q, Cohen JI, Notkins AL, Alevizos I (2017) Ultrarapid measurement of diagnostic antibodies by magnetic capture of immune complexes. Sci Rep 7(1):3818

  61. 61.

    Burbelo PD, Kovacs JA, Ching KH, Issa AT, Iadarola MJ, Murphy AA, Schlaak JF, Masur H, Polis MA, Kottilil S (2010) Proteome-wide anti-hepatitis C virus (HCV) and anti-HIV antibody profiling for predicting and monitoring the response to HCV therapy in HIV-coinfected patients. J Infect Dis 202(6):894–898

  62. 62.

    Burbelo PD, Issa AT, Ching KH, Cohen JI, Iadarola MJ, Marques A (2010) Rapid, simple, quantitative, and highly sensitive antibody detection for Lyme disease. Clin Vaccine Immunol 17(6):904–909

  63. 63.

    Ramanathan R, Burbelo PD, Groot S, Iadarola MJ, Neva FA, Nutman TB (2008) A luciferase immunoprecipitation systems assay enhances the sensitivity and specificity of diagnosis of Strongyloides stercoralis infection. J Infect Dis 198(3):444–451

  64. 64.

    Burbelo PD, Ramanathan R, Klion AD, Iadarola MJ, Nutman TB (2008) Rapid, novel, specific, high-throughput assay for diagnosis of Loa loa infection. J Clin Microbiol 46(7):2298–2304

  65. 65.

    Burbelo PD, Leahy HP, Iadarola MJ, Nutman TB (2009) A four-antigen mixture for rapid assessment of Onchocerca volvulus infection. PLoS Negl Trop Dis 3(5):e438

  66. 66.

    Aye KM, Nagayasu E, Baba M, Yoshida A, Takashima Y, Maruyama H (2018) Evaluation of LIPS (luciferase immunoprecipitation system) for serodiagnosis of toxoplasmosis. J Immunol Methods 462:91–100

  67. 67.

    Prakrankamanant P (2014) Quartz crystal microbalance biosensors: prospects for point-of-care diagnostics. J Med Assoc Thail 97(Suppl 4):S56–S64

  68. 68.

    Luppa PB, Sokoll LJ, Chan DW (2001) Immunosensors--principles and applications to clinical chemistry. Clin Chim Acta 314(1–2):1–26

  69. 69.

    Syedmoradi L, Daneshpour M, Alvandipour M, Gomez FA, Hajghassem H, Omidfar K (2017) Point of care testing: the impact of nanotechnology. Biosens Bioelectron 87:373–387

  70. 70.

    Gervais L, Delamarche E (2009) Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9(23):3330–3337

  71. 71.

    Bertoncello P, Forster RJ (2009) Nanostructured materials for electrochemiluminescence (ECL)-based detection methods: recent advances and future perspectives. Biosens Bioelectron 24(11):3191–3200

  72. 72.

    Miyazaki CM, Shimizu FM, Ferreira M (2017) 6 - Surface plasmon resonance (SPR) for sensors and biosensors. In: Da Róz AL, Ferreira M, de Lima Leite F, Oliveira ON (eds) Nanocharacterization Techniques. William Andrew Publishing, pp 183–200 https://doi.org/10.1016/B978-0-323-49778-7.00006-0

  73. 73.

    Tabakman SM, Lau L, Robinson JT, Price J, Sherlock SP, Wang H, Zhang B, Chen Z, Tangsombatvisit S, Jarrell JA, Utz PJ, Dai H (2011) Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat Commun 2:466

  74. 74.

    Li X, Pomares C, Gonfrier G, Koh B, Zhu S, Gong M, Montoya JG, Dai H (2016) Multiplexed anti-toxoplasma IgG, IgM, and IgA assay on plasmonic gold chips: towards making mass screening possible with dye test precision. J Clin Microbiol 54(7):1726–1733

  75. 75.

    Prusa AR, Hayde M, Unterasinger L, Pollak A, Herkner KR, Kasper DC (2010) Evaluation of the Roche Elecsys Toxo IgG and IgM electrochemiluminescence immunoassay for the detection of gestational toxoplasma infection. Diagn Microbiol Infect Dis 68(4):352–357

  76. 76.

    Gay-Andrieu F, Fricker-Hidalgo H, Sickinger E, Espern A, Brenier-Pinchart MP, Braun HB, Pelloux H (2009) Comparative evaluation of the ARCHITECT Toxo IgG, IgM, and IgG avidity assays for anti-Toxoplasma antibodies detection in pregnant women sera. Diagn Microbiol Infect Dis 65(3):279–287

  77. 77.

    Pomares C, Zhang B, Arulkumar S, Gonfrier G, Marty P, Zhao S, Cheng S, Tang M, Dai H, Montoya JG (2017) Validation of IgG, IgM multiplex plasmonic gold platform in French clinical cohorts for the serodiagnosis and follow-up of Toxoplasma gondii infection. Diagn Microbiol Infect Dis 87(3):213–218

  78. 78.

    Kim J (2012) Joining plasmonics with microfluidics: from convenience to inevitability. Lab Chip 12(19):3611–3623

  79. 79.

    Gao H, Yang J-C, Lin JY, Stuparu AD, Lee MH, Mrksich M, Odom TW (2010) Using the angle-dependent resonances of molded plasmonic crystals to improve the sensitivities of biosensors. Nano Lett 10(7):2549–2554

  80. 80.

    Fan M, Thompson M, Andrade ML, Brolo AG (2010) Silver nanoparticles on a plastic platform for localized surface plasmon resonance biosensing. Anal Chem 82(15):6350–6352

  81. 81.

    Li Z, Xu Y, Fang W, Tong L, Zhang L (2015) Ultra-sensitive nanofiber fluorescence detection in a microfluidic chip. Sensors 15(3):4890

  82. 82.

    Ahmed HM, Ebeid WB (2015) The use of laser-induced fluorescence or ultraviolet detectors for sensitive and selective analysis of tobramycin or erythropoietin in complex samples. Spectrochim Acta A Mol Biomol Spectrosc 143:12–19

  83. 83.

    Novak L, Neuzil P, Pipper J, Zhang Y, Lee S (2007) An integrated fluorescence detection system for lab-on-a-chip applications. Lab Chip 7(1):27–29

  84. 84.

    Berner M, Hilbig U, Schubert MB, Gauglitz G (2017) Laser-induced fluorescence detection platform for point-of-care testing. Meas Sci Technol 28(8):085701

  85. 85.

    Berrettoni C, Berneschi S, Bernini R, Giannetti A, Grimaldi IA, Persichetti G, Testa G, Tombelli S, Trono C, Baldini F (2014) Optical monitoring of therapeutic drugs with a novel fluorescence- based POCT device. Procedia Eng 87:392–395

  86. 86.

    Chen P, Pan D, Mao Z (2014) Development of a portable laser-induced fluorescence system used for in situ measurements of dissolved organic matter. Opt Laser Technol 64:213–219

  87. 87.

    Medawar-Aguilar V, Jofre CF, Fernández-Baldo MA, Alonso A, Angel S, Raba J, Pereira SV, Messina GA (2019) Serological diagnosis of toxoplasmosis disease using a fluorescent immunosensor with chitosan-ZnO-nanoparticles. Anal Biochem 564-565:116–122

  88. 88.

    Pereira AT, Novo P, Prazeres DMF, Chu V, Conde JP (2011) Heterogeneous immunoassays in microfluidic format using fluorescence detection with integrated amorphous silicon photodiodes. Biomicrofluidics 5(1):014102

  89. 89.

    Irawan R, Tjin SC, Fang X, Fu CY (2007) Integration of optical fiber light guide, fluorescence detection system, and multichannel disposable microfluidic chip. Biomed Microdevices 9(3):413–419

  90. 90.

    Zhuo Z, Yu Y, Wang M, Li J, Zhang Z, Liu J, Wu X, Lu A, Zhang G, Zhang B (2017) Recent advances in SELEX technology and aptamer applications in biomedicine. Int J Mol Sci 18(10)

  91. 91.

    Ilgu M, Fazlioglu R, Ozturk M, Ozsurekci Y, Nilsen-Hamilton M (2019) Aptamers for diagnostics with applications for infectious diseases

  92. 92.

    Luo Y, Liu X, Jiang T, Liao P, Fu W (2013) Dual-aptamer-based biosensing of Toxoplasma antibody. Anal Chem 85(17):8354–8360

  93. 93.

    Skládal P (2016) Piezoelectric biosensors. TrAC Trends Anal Chem 79:127–133

  94. 94.

    Wang H, Lei C, Li J, Wu Z, Shen G, Yu R (2004) A piezoelectric immunoagglutination assay for Toxoplasma gondii antibodies using gold nanoparticles. Biosens Bioelectron 19(7):701–709

  95. 95.

    Xie Y, Chen A, Du D, Lin Y (2011) Graphene-based immunosensor for electrochemical quantification of phosphorylated p53 (S15). Anal Chim Acta 699(1):44–48

  96. 96.

    Huang K-J, Li J, Liu Y-M, Cao X, Yu S, Yu M (2012) Disposable immunoassay for hepatitis B surface antigen based on a graphene paste electrode functionalized with gold nanoparticles and a Nafion-cysteine conjugate. Microchim Acta 177(3):419–426

  97. 97.

    Hahn Y-B, Ahmad R, Tripathy N (2012) Chemical and biological sensors based on metal oxide nanostructures. Chem Commun 48(84):10369–10385

  98. 98.

    Tamer U, Cetin D, Suludere Z, Boyaci IH, Temiz HT, Yegenoglu H, Daniel P, Dincer I, Elerman Y (2013) Gold-coated iron composite nanospheres targeted the detection of Escherichia coli. Int J Mol Sci 14(3):6223–6240

  99. 99.

    Jiang S, Hua E, Liang M, Liu B, Xie G (2013) A novel immunosensor for detecting Toxoplasma gondii-specific IgM based on goldmag nanoparticles and graphene sheets. Colloids Surf B: Biointerfaces 101:481–486

  100. 100.

    Costa MESM, Oliveira CBS, Andrade JMA, Medeiros TA, VFA N, Lanza DCF (2016) An alternative nested-PCR assay for the detection of Toxoplasma gondii strains based on GRA7 gene sequences. Acta Trop 159:120–124

  101. 101.

    Robert-Gangneux F, Dardé M-L (2012) Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 25(2):264–296

  102. 102.

    Lin M-H, Chen T-C, T-t K, Tseng C-C, Tseng C-P (2000) Real-time PCR for quantitative detection of Toxoplasma gondii. J Clin Microbiol 38(11):4121–4125

  103. 103.

    Simon A, Labalette P, Ordinaire I, Fréalle E, Dei-Cas E, Camus D, Delhaes L (2004) Use of fluorescence resonance energy transfer hybridization probes to evaluate quantitative real-time PCR for diagnosis of ocular toxoplasmosis. J Clin Microbiol 42(8):3681–3685

  104. 104.

    Bin Dajem SM, Almushait MA (2012) Detection of Toxoplasma gondii DNA by PCR in blood samples collected from pregnant Saudi women from the Aseer region, Saudi Arabia. Ann Saudi Med 32(5):507–512

  105. 105.

    Homan WL, Vercammen M, De Braekeleer J, Verschueren H (2000) Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR1Note: nucleotide sequence data reported in this paper have been submitted to GenBankTM database with the accession number AF146527 (Toxoplasma gondii genomic repetitive 529 bp fragment).1. Int J Parasitol 30(1):69–75

  106. 106.

    Edvinsson B, Lappalainen M, Evengard B, Toxoplasmosis ESGf (2006) Real-time PCR targeting a 529-bp repeat element for diagnosis of toxoplasmosis. Clin Microbiol Infect 12(2):131–136

  107. 107.

    Wahab T, Edvinsson B, Palm D, Lindh J (2010) Comparison of the AF146527 and B1 repeated elements, two real-time PCR targets used for detection of Toxoplasma gondii. J Clin Microbiol 48(2):591–592

  108. 108.

    Coppens I, Dunn JD, Romano JD, Pypaert M, Zhang H, Boothroyd JC, Joiner KA (2006) Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell 125(2):261–274

  109. 109.

    Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):E63

  110. 110.

    X-m S, Y-s J, X-y L, Xiang M, He G, Xie L, J-x S, Suo X (2017) Improvement and evaluation of loop-mediated isothermal amplification for rapid detection of Toxoplasma gondii infection in human blood samples. PLoS One 12(1):e0169125

  111. 111.

    Lau YL, Meganathan P, Sonaimuthu P, Thiruvengadam G, Nissapatorn V, Chen Y (2010) Specific, sensitive, and rapid diagnosis of active toxoplasmosis by a loop-mediated isothermal amplification method using blood samples from patients. J Clin Microbiol 48(10):3698–3702

  112. 112.

    Varlet-Marie E, Sterkers Y, Perrotte M, Bastien P (2018) A new LAMP-based assay for the molecular diagnosis of toxoplasmosis: comparison with a proficient PCR assay. Int J Parasitol 48(6):457–462

  113. 113.

    El Aal AAA, Nahnoush RK, Elmallawany MA, El-Sherbiny WS, Badr MS, Nasr GM (2018) Isothermal PCR for feasible molecular diagnosis of primary toxoplasmosis in women recently experienced spontaneous abortion. Open Access Maced J Med Sci 6(6):982–987

  114. 114.

    Yazar S, Yaman O, Eser B, Altuntas F, Kurnaz F, Sahin I (2004) Investigation of anti-Toxoplasma gondii antibodies in patients with neoplasia. J Med Microbiol 53(Pt 12):1183–1186

  115. 115.

    Fallahi S, Seyyed Tabaei SJ, Pournia Y, Zebardast N, Kazemi B (2014) Comparison of loop-mediated isothermal amplification (LAMP) and nested-PCR assay targeting the RE and B1 gene for detection of Toxoplasma gondii in blood samples of children with leukaemia. Diagn Microbiol Infect Dis 79(3):347–354

  116. 116.

    Honsvall BK, Robertson LJ (2017) From research lab to standard environmental analysis tool: will NASBA make the leap? Water Res 109:389–397

  117. 117.

    Noruzi R, Dalimi A, Forouzandeh M, Ghaffarifar F (2012) Identification of live Toxoplasma gondii by the NASBA method in rat. Pathobiol Res 15(1):73–80

  118. 118.

    Norouzi R, Dalimi A, Forozandeh Moghadam M, Ghaffarifar F (2016) Comparison of a nucleic acid sequence-based amplification (NASBA) and real-time reverse transcriptase PCR methods for detection of Toxoplasma gondii in rat blood samples. J Zoonotic Dis 1(1):15–23

  119. 119.

    Bhattacharyya A, Klapperich CM (2007) Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples. Biomed Microdevices 9(2):245–251

  120. 120.

    Koczula KM, Gallotta A (2016) Lateral flow assays. Essays Biochem 60(1):111–120

  121. 121.

    Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393(2):569–582

  122. 122.

    Hajissa K, Zakaria R, Suppian R, Mohamed Z (2017) An evaluation of a recombinant multiepitope based antigen for detection of Toxoplasma gondii specific antibodies. BMC Infect Dis 17(1):807

  123. 123.

    Dai JF, Jiang M, Qu LL, Sun L, Wang YY, Gong LL, Gong RJ, Si J (2013) Toxoplasma gondii: enzyme-linked immunosorbent assay based on a recombinant multi-epitope peptide for distinguishing recent from past infection in human sera. Exp Parasitol 133(1):95–100

  124. 124.

    Drapała D, Holec-Gąsior L, Kur J (2015) New recombinant chimeric antigens, P35-MAG1, MIC1-ROP1, and MAG1-ROP1, for the serodiagnosis of human toxoplasmosis. Diagn Microbiol Infect Dis 82(1):34–39

  125. 125.

    Beghetto E, Spadoni A, Bruno L, Buffolano W, Gargano N (2006) Chimeric antigens of Toxoplasma gondii: toward standardization of toxoplasmosis serodiagnosis using recombinant products. J Clin Microbiol 44(6):2133–2140

  126. 126.

    Holec-Gasior L, Ferra B, Drapala D (2012) MIC1-MAG1-SAG1 chimeric protein, a most effective antigen for detection of human toxoplasmosis. Clin Vaccine Immunol 19(12):1977–1979

  127. 127.

    Holec-Gąsior L, Ferra B, Drapała D, Lautenbach D, Kur J (2012) A new MIC1-MAG1 recombinant chimeric antigen can be used instead of the Toxoplasma gondii lysate antigen in serodiagnosis of human toxoplasmosis. Clin Vaccine Immunol 19(1):57–63

  128. 128.

    Kaittanis C, Santra S, Perez JM (2010) Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev 62(4–5):408–423

  129. 129.

    Duchesne L, Lacombe K (2018) Innovative technologies for point-of-care testing of viral hepatitis in low-resource and decentralized settings. J Viral Hepat 25(2):108–117

  130. 130.

    Maffert P, Reverchon S, Nasser W, Rozand C, Abaibou H (2017) New nucleic acid testing devices to diagnose infectious diseases in resource-limited settings. Eur J Clin Microbiol Infect Dis 36(10):1717–1731

  131. 131.

    Sia SK, Kricka LJ (2008) Microfluidics and point-of-care testing. Lab Chip 8(12):1982–1983

Download references

Acknowledgments

We are thankful to Universiti Sains Malaysia and Malaysian Ministry of Education [Higher Institution Centre of Excellence Program (HICoE), No. 311/CIPPM/4401005] for the support of the first author.

Author information

Both authors contributed equally in writing, reading, and approving the final version of the manuscript.

Correspondence to Rahmah Noordin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, A.H., Noordin, R. Serological and molecular rapid diagnostic tests for Toxoplasma infection in humans and animals. Eur J Clin Microbiol Infect Dis 39, 19–30 (2020) doi:10.1007/s10096-019-03680-2

Download citation

Keywords

  • Toxoplasma infection
  • Toxoplasma gondii
  • Rapid diagnostic tests
  • Immunoassay
  • Molecular diagnostics
  • Point-of-care test