Clinical characteristics and treatment outcomes of Enterococcus durans bacteremia: a 20-year experience in a tertiary care hospital

  • Byung-Han Ryu
  • Jeongmin Hong
  • Jiwon Jung
  • Min Jae Kim
  • Heungsup Sung
  • Mi-Na Kim
  • Yong Pil Chong
  • Sung-Han Kim
  • Sang-Oh Lee
  • Yang Soo Kim
  • Jun Hee Woo
  • Sang-Ho ChoiEmail author
Original Article


While the clinical characteristics and treatment outcomes of Enterococcus faecalis and E. faecium bacteremia are well known, those of E. durans bacteremia are still largely unclear. We retrospectively identified 80 adult E. durans bacteremia cases treated at our 2700-bed tertiary care hospital between January 1997 and December 2016. We compared the clinical characteristics and treatment outcomes of the adult patients with E. durans bacteremia (case group) with those of E. faecalis and E. faecium bacteremia cases (two control groups). The case and control groups were matched for sex, age, and date of onset of bacteremia. E. durans was responsible for 1.2% of all enterococcal bacteremia cases at our hospital. Of 80 cases, 39 (48.8%) had biliary tract infection and 18 (22.5%) had urinary tract infection. Community-onset bacteremia was more frequent in the case group than in the control groups (56.2% vs. 35.0% vs. 21.2%, p < 0.01). Infective endocarditis tended to be more common in the E. durans group (7.5% vs. 1.2% vs. 1.2%, p = 0.05). The majority of E. durans isolates were susceptible to penicillin (66/76, 86.8%), ampicillin (67/76, 88.2%), and vancomycin (75/76, 98.7%). The case group had significantly lower all-cause mortality (20.0% vs. 31.2% vs. 42.5%, p < 0.01) and bacteremia-related mortality (2.5% vs. 16.2% vs. 18.8%, p < 0.01) than the control groups. E. durans bacteremia mainly originates from the biliary or urinary tract and is associated with a lower risk of mortality.


Enterococcus durans Enterococcus faecalis Enterococcus faecium Bacteremia Mortality 


Compliance with ethical standards

This study was approved by the Asan Medical Center Institutional Review Board.

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

10096_2019_3605_MOESM1_ESM.doc (46 kb)
ESM 1 (DOC 46 kb)


  1. 1.
    Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK (2008) NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol 29(11):996–1011. CrossRefGoogle Scholar
  2. 2.
    Brown DF, Hope R, Livermore DM, Brick G, Broughton K, George RC, Reynolds R (2008) Non-susceptibility trends among enterococci and non-pneumococcal streptococci from bacteraemias in the UK and Ireland, 2001-06. J Antimicrob Chemother 62(Suppl 2):ii75–ii85. Google Scholar
  3. 3.
    Sherman JM, Wing HU (1937) Streptococcus durans n. sp. J Dairy Sci 20(3):165–167CrossRefGoogle Scholar
  4. 4.
    Abe Y, Nakamura K, Yamada M, Yamamoto Y (2006) Encephalomalacia with Enterococcus durans infection in the brain stem and cerebral hemisphere in chicks in Japan. Avian Dis 50(1):139–141. CrossRefGoogle Scholar
  5. 5.
    Cheon DS, Chae C (1996) Outbreak of diarrhea associated with Enterococcus durans in piglets. J Vet Diagn Investig 8(1):123–124. CrossRefGoogle Scholar
  6. 6.
    Collins M, Jones D, Farrow J, Kilpper-Balz R, Schleifer K (1984) Enterococcus avium nom. rev., comb. nov.; E. casseliflavus nom. rev., comb. nov.; E. durans nom. rev., comb. nov.; E. gallinarum comb. nov.; and E. malodoratus sp. nov. Int J Syst Evol Microbiol 34(2):220–223Google Scholar
  7. 7.
    Ruoff KL, de la Maza L, Murtagh MJ, Spargo JD, Ferraro MJ (1990) Species identities of enterococci isolated from clinical specimens. J Clin Microbiol 28(3):435–437Google Scholar
  8. 8.
    Tan CK, Lai CC, Wang JY, Lin SH, Liao CH, Huang YT, Wang CY, Lin HI, Hsueh PR (2010) Bacteremia caused by non-faecalis and non-faecium enterococcus species at a medical center in Taiwan, 2000 to 2008. J Infect 61(1):34–43. CrossRefGoogle Scholar
  9. 9.
    Watanabe T, Shimohashi H, Kawai Y, Mutai M (1981) Studies on streptococci. I. Distribution of fecal streptococci in man. Microbiol Immunol 25(3):257–269CrossRefGoogle Scholar
  10. 10.
    Abamecha A, Wondafrash B, Abdissa A (2015) Antimicrobial resistance profile of Enterococcus species isolated from intestinal tracts of hospitalized patients in Jimma, Ethiopia. BMC Res Notes 8:213. CrossRefGoogle Scholar
  11. 11.
    Gaspar F, Teixeira N, Rigottier-Gois L, Marujo P, Nielsen-LeRoux C, Crespo MT, Lopes Mde F, Serror P (2009) Virulence of Enterococcus faecalis dairy strains in an insect model: the role of fsrB and gelE. Microbiology 155 (Pt 11:3564–3571. CrossRefGoogle Scholar
  12. 12.
    Stepanovic S, Jovanovic M, Lavadinovic L, Stosovic B, Pelemis M (2004) Enterococcus durans endocarditis in a patient with transposition of the great vessels. J Med Microbiol 53(Pt 3):259–261. CrossRefGoogle Scholar
  13. 13.
    Vijayakrishnan R, Rapose A (2012) Fatal Enterococcus durans aortic valve endocarditis: a case report and review of the literature. BMJ Case Rep 2012. doi:
  14. 14.
    Kenzaka T, Takamura N, Kumabe A, Takeda K (2013) A case of subacute infective endocarditis and blood access infection caused by Enterococcus durans. BMC Infect Dis 13:594. CrossRefGoogle Scholar
  15. 15.
    Fallavollita L, Di Gioacchino L, Balestrini F (2016) Bioprosthetic aortic valve endocarditis in association with Enterococcus durans. Tex Heart Inst J 43(2):165–167. CrossRefGoogle Scholar
  16. 16.
    Zala A, Collins N (2016) Enterococcus durans prosthetic valve endocarditis: a previously unreported clinical entity. Heart Lung Circ 25(10):e133–e136. CrossRefGoogle Scholar
  17. 17.
    Manero A, Blanch AR (1999) Identification of Enterococcus spp. with a biochemical key. Appl Environ Microbiol 65(10):4425–4430Google Scholar
  18. 18.
    CLSI (2016) Performance standards for antimicrobial susceptibility testing; 26 ed. CLSI supplement M100S. CLSI, Wayne, PAGoogle Scholar
  19. 19.
    Friedman ND, Kaye KS, Stout JE, McGarry SA, Trivette SL, Briggs JP, Lamm W, Clark C, MacFarquhar J, Walton AL, Reller LB, Sexton DJ (2002) Health care--associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med 137(10):791–797CrossRefGoogle Scholar
  20. 20.
    Mc CW, Jackson G (1962) Gram-negative bacteremia: I. Etiology and ecology. Arch Intern Med 110(6):847–855. CrossRefGoogle Scholar
  21. 21.
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). Jama 315(8):801–810. CrossRefGoogle Scholar
  22. 22.
    Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39(3):309–317. CrossRefGoogle Scholar
  23. 23.
    Luzzaro F, Ortisi G, Larosa M, Drago M, Brigante G, Gesu G (2011) Prevalence and epidemiology of microbial pathogens causing bloodstream infections: results of the OASIS multicenter study. Diagn Microbiol Infect Dis 69(4):363–369. CrossRefGoogle Scholar
  24. 24.
    Frickmann H, Koller K, Veil I, Weise M, Ludyga A, Schwarz NG, Warnke P, Podbielski A (2017) On the role of enterococci in the bloodstream: results of a single-center, retrospective, observational study at a German university hospital. Eur J Microbiol Immunol (Bp) 7(4):284–295. CrossRefGoogle Scholar
  25. 25.
    Coombs GW, Pearson JC, Daley DA, Le T, Robinson OJ, Gottlieb T, Howden BP, Johnson PD, Bennett CM, Stinear TP, Turnidge JD (2014) Molecular epidemiology of enterococcal bacteremia in Australia. J Clin Microbiol 52(3):897–905. CrossRefGoogle Scholar
  26. 26.
    Choi SH, Lee SO, Kim TH, Chung JW, Choo EJ, Kwak YG, Kim MN, Kim YS, Woo JH, Ryu J, Kim NJ (2004) Clinical features and outcomes of bacteremia caused by Enterococcus casseliflavus and Enterococcus gallinarum: analysis of 56 cases. Clin Infect Dis 38(1):53–61. CrossRefGoogle Scholar
  27. 27.
    Na S, Park HJ, Park KH, Cho OH, Chong YP, Kim SH, Lee SO, Sung H, Kim MN, Jeong JY, Kim YS, Woo JH, Choi SH (2012) Enterococcus avium bacteremia: a 12-year clinical experience with 53 patients. Eur J Clin Microbiol Infect Dis 31(3):303–310. CrossRefGoogle Scholar
  28. 28.
    Kau AL, Martin SM, Lyon W, Hayes E, Caparon MG, Hultgren SJ (2005) Enterococcus faecalis tropism for the kidneys in the urinary tract of C57BL/6J mice. Infect Immun 73(4):2461–2468. CrossRefGoogle Scholar
  29. 29.
    Singh KV, Nallapareddy SR, Murray BE (2007) Importance of the ebp (endocarditis- and biofilm-associated pilus) locus in the pathogenesis of Enterococcus faecalis ascending urinary tract infection. J Infect Dis 195(11):1671–1677. CrossRefGoogle Scholar
  30. 30.
    Di Rosa R, Creti R, Venditti M, D’Amelio R, Arciola CR, Montanaro L, Baldassarri L (2006) Relationship between biofilm formation, the enterococcal surface protein (Esp) and gelatinase in clinical isolates of Enterococcus faecalis and Enterococcus faecium. FEMS Microbiol Lett 256(1):145–150. CrossRefGoogle Scholar
  31. 31.
    Mohamed JA, Huang DB (2007) Biofilm formation by enterococci. J Med Microbiol 56(Pt 12):1581–1588. CrossRefGoogle Scholar
  32. 32.
    Popovic N, Dinic M, Tolinacki M, Mihajlovic S, Terzic-Vidojevic A, Bojic S, Djokic J, Golic N, Veljovic K (2018) New insight into biofilm formation ability, the presence of virulence genes and probiotic potential of Enterococcus sp. dairy isolates. Front Microbiol 9:78. CrossRefGoogle Scholar
  33. 33.
    Chow JW, Thal LA, Perri MB, Vazquez JA, Donabedian SM, Clewell DB, Zervos MJ (1993) Plasmid-associated hemolysin and aggregation substance production contribute to virulence in experimental enterococcal endocarditis. Antimicrob Agents Chemother 37(11):2474–2477CrossRefGoogle Scholar
  34. 34.
    Shankar V, Baghdayan AS, Huycke MM, Lindahl G, Gilmore MS (1999) Infection-derived Enterococcus faecalis strains are enriched in esp, a gene encoding a novel surface protein. Infect Immun 67(1):193–200Google Scholar
  35. 35.
    DiazGranados CA, Zimmer SM, Klein M, Jernigan JA (2005) Comparison of mortality associated with vancomycin-resistant and vancomycin-susceptible enterococcal bloodstream infections: a meta-analysis. Clin Infect Dis 41(3):327–333. CrossRefGoogle Scholar
  36. 36.
    Salgado CD, Farr BM (2003) Outcomes associated with vancomycin-resistant enterococci: a meta-analysis. Infect Control Hosp Epidemiol 24(9):690–698. CrossRefGoogle Scholar
  37. 37.
    Prematunge C, MacDougall C, Johnstone J, Adomako K, Lam F, Robertson J, Garber G (2016) VRE and VSE bacteremia outcomes in the era of effective VRE therapy: a systematic review and meta-analysis. Infect Control Hosp Epidemiol 37(1):26–35. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Byung-Han Ryu
    • 1
  • Jeongmin Hong
    • 2
  • Jiwon Jung
    • 3
  • Min Jae Kim
    • 3
  • Heungsup Sung
    • 4
  • Mi-Na Kim
    • 4
  • Yong Pil Chong
    • 3
  • Sung-Han Kim
    • 3
  • Sang-Oh Lee
    • 3
  • Yang Soo Kim
    • 3
  • Jun Hee Woo
    • 3
  • Sang-Ho Choi
    • 3
    Email author
  1. 1.Department of Infectious DiseasesGyeongsang National University Changwon HospitalChangwonRepublic of Korea
  2. 2.Department of Infectious DiseasesDaegu Catholic University Medical CenterDaeguRepublic of Korea
  3. 3.Department of Infectious DiseasesAsan Medical Center, University of Ulsan College of MedicineSeoulRepublic of Korea
  4. 4.Department of Laboratory MedicineAsan Medical Center, University of Ulsan College of MedicineSeoulRepublic of Korea

Personalised recommendations