Advertisement

Detection of Methanobrevibacter smithii in vaginal samples collected from women diagnosed with bacterial vaginosis

  • Ghiles Grine
  • Hortense Drouet
  • Florence Fenollar
  • Florence Bretelle
  • Didier Raoult
  • Michel DrancourtEmail author
Original Article

Abstract

Vaginosis is a dysbiotic condition of the vaginal cavity that has deleterious effects during pregnancy. The role of methanogens in this disease is unknown since current methods of investigation are not appropriate for the search of methanogens. We prospectively investigated the presence of methanogens in vaginal specimens collected from 33 women thereafter diagnosed with bacterial vaginosis and 92 women thereafter diagnosed without bacterial vaginosis (control group) by direct microscopic examination and fluorescent in situ hybridization, PCR-sequencing, and real-time PCR and isolation and culture. These investigations found only one methanogen, Methanobrevibacter smithii, exclusively in 97% bacterial vaginosis specimens and in two intermediate microbiota specimens. M. smithii was detected microscopically in 2/20 specimens analyzed, by PCR-based observations in 34/125 specimens with 99% sequence similarity with the reference 16S rRNA and mcrA gene sequences and was cultured in 9/40 specimens. These data suggest that the detection of M. smithii could be used as a biomarker for the laboratory diagnosis of bacterial vaginosis.

Keywords

Diagnosis Methanobrevibacter smithii Methanogens Vaginosis 

Notes

Acknowledgments

The authors thank Magdalen Lardière for English correction.

Authors’ contribution

GG performed detection of methanogens, analyzed the data, and drafted the manuscript. HD took care of the patients and collected specimens. FF designed the study, analyzed the data, and drafted the manuscript. FB designed the study and took care of the patients. DR designed the study, analyzed the data, and drafted the manuscript. MD designed the study, analyzed the data, and drafted the manuscript.

All authors read and approved the final manuscript.

Funding information

This study was funded by the IHU Méditerranée Infection, Marseille, France.

GG benefits from a PhD grant from the Fondation Méditerranée Infection, Marseille, France. This work was supported by the French Government under the «Investissements d’avenir» (Investments for the Future) program managed by the Agence Nationale de la Recherche (ANR, fr: National Agency for Research), (reference: Méditerranée Infection 10-IAHU-03).

This work was supported by Région Provence Alpes Côte d’Azur and European funding FEDER PA 0000319 IHUBIOTK.

Compliance with ethical standards

Conflict of interest

GG, FF, DR, and MD are co-inventors of a patent on the molecular detection of M. smithii for the diagnosis of BV.

Ethical approval

The study was authorized by the local Institut Fédératif de Recherche 48 Ethics Committee (Marseille, France) under agreement number 09-022.

Informed consent

All patients studied in this report have signed an informed consent.

Supplementary material

10096_2019_3592_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 15 kb)

References

  1. 1.
    Bitew A, Abebaw Y, Bekele D, Mihret A (2017) Prevalence of bacterial vaginosis and associated risk factors among women complaining of genital tract infection. Int J Microbiol 150:1–13CrossRefGoogle Scholar
  2. 2.
    Myer L, Denny L, Telerant R et al (2005) Bacterial vaginosis and susceptibility to HIV infection in south African women: a nested case control study. J Infect Dis 2:1372–1380CrossRefGoogle Scholar
  3. 3.
    Kenyon C, Colebunders R, Crucitti T (2013) The global epidemiology of bacterial vaginosis: a systematic review. Am J Obstet Gynecol 209:505–523CrossRefGoogle Scholar
  4. 4.
    Spiegel C (1991) Bacterial vaginosis. Clin Microbiol Rev 4:485–502CrossRefGoogle Scholar
  5. 5.
    Thorsen P, Jensen IP, Jeune B, Ebbesen N, Arpi M, Bremmelgaard A, Moller BR (1998) Few microorganisms associated with bacterial vaginosis may constitute the pathologic core: a population-based microbiologic study among 3596 pregnant women. Am J Obstet Gynecol 178:580–587CrossRefGoogle Scholar
  6. 6.
    Sha BE, Chen HY, Wang QJ, Zariffard MR, Cohen MH, Spear GT (2005) Utility of Amsel Criteria, Nugent Score, and Quantitative PCR for for Diagnosis of Bacterial Vaginosis in Human Immunodeficiency Virus-Infected Women. Society 43:4607–4612Google Scholar
  7. 7.
    Mohammadzadeh F, Dolatian M, Jorjani M, Alavi Majd H (2014) Diagnostic value of Amsel’s clinical criteria for diagnosis of bacterial vaginosis. Global J Health Sci 7:8–14CrossRefGoogle Scholar
  8. 8.
    Fredricks DN, Fiedler TL, Marrazzo JM (2005) Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med 353:1899–1911CrossRefGoogle Scholar
  9. 9.
    Thomason JL, Anderson RJ, Gelbart SM, Osypowski PJ, Scaglione NJ, el Tabbakh G et al (1992) Simplified gram stain interpretive method for diagnosis of bacterial vaginosis. Am J Obstet Gynecol 167:16–19CrossRefGoogle Scholar
  10. 10.
    Ison CA, Hay PE (2002) Validation of a simplified grading of gram stained vaginal smears for use in genitourinary medicine clinics. Sex Transm Infect 78:413–415CrossRefGoogle Scholar
  11. 11.
    Nugent RP, Krohn MA, Hillier SL (1991) Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J Clin Microbiol 29:297–301Google Scholar
  12. 12.
    Menard JP, Mazouni C, Salem-Cherif I et al (2010) High vaginal concentrations of Atopobium vaginae and Gardnerella vaginalis in women undergoing preterm labor. Obstet Gynecol 115:134–140CrossRefGoogle Scholar
  13. 13.
    Menard JP, Mazouni C, Fenollar F, Raoult D, Boubli L, Bretelle F (2010) Diagnostic accuracy of quantitative real-time PCR assay versus clinical and gram stain identification of bacterial vaginosis. Eur J Clin Microbiol Infect Dis 29:1547–1552CrossRefGoogle Scholar
  14. 14.
    Menard J, Fenollar F, Henry M, Bretelle F, Raoult D (2008) Molecular quantification of Gardnerella vaginalis and Atopobium vaginae loads to predict bacterial vaginosis. Clin Infect Dis 47:33–43CrossRefGoogle Scholar
  15. 15.
    Bretelle F, Rozenberg P, Pascal A et al (2015) High Atopobium vaginae and Gardnerella vaginalis vaginal loads are associated with preterm birth. Clin Infect Dis 60:860–867CrossRefGoogle Scholar
  16. 16.
    Srinivasan S, Fredricks DN (2008) The human vaginal bacterial biota and bacterial vaginosis. Interdiscip Perspect Infect Dis 208:1–22CrossRefGoogle Scholar
  17. 17.
    Hillier SL, Krohn MA, Rabe LK, Klebanoff SJ, Eschenbach DA (1993) The normal vaginal flora, H2 O2-producing lactobacilli, and bacterial vaginosis in pregnant women. Clin Infect Dis 16:273–281CrossRefGoogle Scholar
  18. 18.
    Dominguez-Bello MG, De Jesus-Laboy KM, Shen N et al (2016) Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med 22:250–253CrossRefGoogle Scholar
  19. 19.
    Ling Z, Kong J, Liu F, Zhu H, Chen X, Wang Y et al (2010) Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics 11:482–428CrossRefGoogle Scholar
  20. 20.
    Montoya VK (2013) Metagenomic analyses of two female genital tract diseases : bacterial vaginosis and ovarian cancer. A Thesis. University of British Columbia available at https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0073777
  21. 21.
    Aagaard K, Riehle K, Ma J, Segata N, Mistretta TA, Coarfa C et al (2012) A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One 7:12–20CrossRefGoogle Scholar
  22. 22.
    Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189CrossRefGoogle Scholar
  23. 23.
    Khelaifia S, Ramonet PY, Bedotto Buffet M, Drancourt M (2013) A semi-automated protocol for archaea DNA extraction from stools. BMC Res Notes 6:186–191CrossRefGoogle Scholar
  24. 24.
    Belay N, Mukhopadhyay B, Conway de Macario E, Galask R, Daniels L (1990) Methanogenic bacteria in human vaginal samples. J Clin Microbiol 28:1666–1668Google Scholar
  25. 25.
    Dridi B, Henry M, El Khéchine A, Raoult D, Drancourt M (2009) High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS One 4:23–29CrossRefGoogle Scholar
  26. 26.
    Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M (2011) The antimicrobial resistance pattern of cultured human methanogens reflects the unique phylogenetic position of archaea. J Antimicrob Chemother 66:2038–2044CrossRefGoogle Scholar
  27. 27.
    Drancourt M, Nkamga VD, Lakhe NA, Régis JM, Dufour H, Fournier PE et al (2017) Evidence of archaeal methanogens in brain abscess. Clin Infect Dis 65:1–5CrossRefGoogle Scholar
  28. 28.
    Nkamga VD, Lotte R, Roger PM, Drancourt M, Ruimy R (2016) Methanobrevibacter smithii and Bacteroides thetaiotaomicron cultivated from a chronic paravertebral muscle abscess. Clin Microbiol Infect 22:1008–1009CrossRefGoogle Scholar
  29. 29.
    Hungate R, Macy J (1973) The roll-tube method for cultivation of strict anaerobes. Modern methods in the study of microbial ecology. Oikos Editorial Office: Bulletins of the Ecological Research Committee, pp 123–126Google Scholar
  30. 30.
    Khelaifia S, Raoult D, Drancourt M (2013) A versatile medium for cultivating methanogenic archaea. PLoS One 8:13–20CrossRefGoogle Scholar
  31. 31.
    Nkamga VD, Drancourt M (2015) Methanomassiliicoccaceae. In: Whitman WB (ed) Bergey’s manual of systematics of archaea and bacteria. Wiley, ChichesterGoogle Scholar
  32. 32.
    Khelaifia S, Lagier JC, Nkamga VD, Guilhot E, Drancourt M, Raoult D (2016) Aerobic culture of methanogenic archaea without an external source of hydrogen. Eur J Clin Microbiol Infect Dis 35:985–991CrossRefGoogle Scholar
  33. 33.
    Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA (2004) Methanogenic archaea and human periodontal disease. Proc Natl Acad Sci 101:6176–6181CrossRefGoogle Scholar
  34. 34.
    Raskin L, Stromley JM, Rittmann BE, Stahl D (1994) Group-specific 16S ribosomal-Rna hybridization probes to describe natural communities of methanogens. Appl Environ Microbiol 60:1232–1240Google Scholar
  35. 35.
    Grine G, Boualam MA, Drancourt M (2017) Methanobrevibacter smithii, a methanogen consistently colonising the newborn stomach. Eur J Clin Microbiol Infect Dis 12:1–7Google Scholar
  36. 36.
    Demonfort V, Henrissat B, Drancourt M (2017) Archaea: essential inhabitants of the human digestive microbiota. Hum Microbiome J3:1–8Google Scholar
  37. 37.
    Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen. Nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62:1902–1907CrossRefGoogle Scholar
  38. 38.
    Nguyen-Hieu T, Khelaifia S, Aboudharam G, Drancourt M (2013) Methanogenic archaea in subgingival sites: a review. Apmis 121:467–477CrossRefGoogle Scholar
  39. 39.
    Gaci N, Borrel G, Tottey W, O’Toole PW, Brugère JF (2014) Archaea and the human gut: new beginning of an old story. World J Gastroenterol 20:16062–16078CrossRefGoogle Scholar
  40. 40.
    Huynh HTT, Pignoly M, Drancourt M, Aboudharam G (2017) A new methanogen “Methanobrevibacter massiliense” isolated in a case of severe periodontitis. BMC Res Notes 10:657–663CrossRefGoogle Scholar
  41. 41.
    Koskinen K, Pausan MR, Perras AK, Beck M, Bang C, Mora M et al (2007) First insights into the diverse human Archaeome: specific detection of archaea in the gastrointestinal tract, lung, and Nose and on Skin. MBio 8:1–17Google Scholar
  42. 42.
    Grine G, Terrer E, Boualam MA, Aboudharam G, Chaudet H, Ruimy R et al (2018) Tobacco-smoking-related prevalence of methanogens in the oral fluid microbiota. Sci Rep 8:91–97CrossRefGoogle Scholar
  43. 43.
    Johnston C, Ufnar JA, Griffith JF, Gooch JA, Stewart JR (2010) A real-time qPCR assay for the detection of the nifH gene of Methanobrevibacter smithii, a potential indicator of sewage pollution. J Appl Microbiol 109:1946–1956CrossRefGoogle Scholar
  44. 44.
    Ufnar JA, Wang SY, Christiansen JM, Yampara-Iquise H, Carson CA, Ellender RD (2006) Detection of the nifH gene of Methanobrevibacter smithii: a potential tool to identify sewage pollution in recreational waters. J Appl Microbiol 101:44–52CrossRefGoogle Scholar
  45. 45.
    Fenollar F, Raoult D (2009) Does bacterial vaginosis result from fecal transplantation? J infect dis. 2016;214:1784-90.Vianna ME, Conrads G, Gomes BPFA, Horz HP. T-RFLP based mcrA gene analysis of methanogenic archaea in association with oral infections and evidence of a novel Methanobrevibacter phylotype. Oral Microbiol Immunol 24:417–422CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ghiles Grine
    • 1
    • 2
  • Hortense Drouet
    • 3
  • Florence Fenollar
    • 3
  • Florence Bretelle
    • 4
  • Didier Raoult
    • 1
    • 2
  • Michel Drancourt
    • 1
    • 2
    Email author
  1. 1.MEPHI, IRD, IHU Méditerranée InfectionAix Marseille UniversityMarseilleFrance
  2. 2.IHU Méditerranée Infection, UMR MEPHIMarseilleFrance
  3. 3.VITROME, IRD, AP-HM, IHU-Méditerranée InfectionAix Marseille UniversityMarseilleFrance
  4. 4.Gynecology Department, Assistance Publique-Hôpitaux de MarseilleMarseilleFrance

Personalised recommendations