Monomicrobial bone and joint infection due to Corynebacterium striatum: literature review and amoxicillin-rifampin combination as treatment perspective

  • Latifa Noussair
  • Elsa Salomon
  • Faten El Sayed
  • Clara Duran
  • Frédérique Bouchand
  • Anne-Laure Roux
  • Jean-Louis Gaillard
  • Thomas Bauer
  • Martin Rottman
  • Aurélien DinhEmail author
Original Article


Corynebacterium striatum is a ubiquitous colonizer of human skin and mucous membranes. It is increasingly involved in infections, especially with prosthetic devices or in immunocompromised individuals. Microbiological diagnosis is challenging and bacterial resistance is a major concern. We performed a retrospective study of monomicrobial bone and joint infections (BJI) due to C. striatum in two referral centers from April 2012 to July 2017. We collected the patients’ clinical and microbiological characteristics and outcomes. We also performed a literature review of BJI due to C. striatum. We identified 12 cases (nine prosthetic joint infections, one osteosynthetic device infection, one non-union, and one arthritis) in 11 patients, five of which were immunocompromised. Microbiological diagnosis was performed with prolonged culture media. Ten out of 12 strains were susceptible to aminopenicillin, a drug class not recommended for testing by the EUCAST/CASFM guidelines, and 8/12 patients were treated with amoxicillin-rifampicin. The cure rate was 8/12, after a median follow-up period of 487.5 days (IQR 140.3–1348.5). Twelve cases of BJI due to C. striatum were previously reported. Among them, 5/12 patients were immunocompromised, 3/12 cases were acute BJI, and 2/12 were device-related infections. The diagnosis was performed by PCR in one case, and 10/12 patients were treated with glycolipopeptides, with a cure rate of 11/12. We report the largest cohort of monomicrobial BJI with C. striatum. Determination of aminopenicillin susceptibility is essential since it is frequently active in our experience, even in BJI. The cure rate of this infection seems high.


Corynebacterium striatum Bone and joint infection Prosthesis joint infection Multidrug-resistant organism Opportunistic infection 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Bernard K (2012) The genus corynebacterium and other medically relevant coryneform-like bacteria. J Clin Microbiol 50:3152–3158. [cited 2018 31]. CrossRefGoogle Scholar
  2. 2.
    Lipsky BA, Goldberger AC, Tompkins LS, Plorde JJ (1982) Infections caused by nondiphtheria corynebacteria. Rev Infect Dis 4:1220–1235 [cited 2018 6]CrossRefGoogle Scholar
  3. 3.
    Funke G, von Graevenitz A, Clarridge JE, Bernard KA (1997) Clinical microbiology of coryneform bacteria. Clin Microbiol Rev 10:125–159 [cited 2018 6]CrossRefGoogle Scholar
  4. 4.
    Roux V, Drancourt M, Stein A, Riegel P, Raoult D, La Scola B (2004) Corynebacterium species isolated from bone and joint infections identified by 16S rRNA gene sequence analysis. J Clin Microbiol 42:2231–2233.: [cited 2018 20]. CrossRefGoogle Scholar
  5. 5.
    Coyle MB, Lipsky BA (1990) Coryneform bacteria in infectious diseases: clinical and laboratory aspects. Clin Microbiol Rev 3:227–246 [cited 2018 21]CrossRefGoogle Scholar
  6. 6.
    Cazanave C, Greenwood-Quaintance KE, Hanssen AD, Patel R (2012) Corynebacterium prosthetic joint infection. J Clin Microbiol 50:1518–1523. [cited 2018 20]. CrossRefGoogle Scholar
  7. 7.
    Markowitz SM, Coudron PE (1990) Native valve endocarditis caused by an organism resembling Corynebacterium striatum. J Clin Microbiol 28:8–10Google Scholar
  8. 8.
    Tarr PE, Stock F, Cooke RH, Fedorko DP, Lucey DR (2003) Multidrug-resistant Corynebacterium striatum pneumonia in a heart transplant recipient. Transpl Infect Dis 5:53–58CrossRefGoogle Scholar
  9. 9.
    Scholle D (2007) A spontaneous joint infection with Corynebacterium striatum. J. Clin. Microbiol. [Internet] 45:656–658. [cited 2018 20]. CrossRefGoogle Scholar
  10. 10.
    von Graevenitz A, Frommelt L, Pünter-Streit V, Funke G (1998) Diversity of coryneforms found in infections following prosthetic joint insertion and open fractures. Infection 26:36–38. [cited 2018 20]. CrossRefGoogle Scholar
  11. 11.
    Rizvi M, Khan F, Raza A, Shukla I, Bin SA (2011) Emergence of coryneforms in osteomyelitis and orthopaedic surgical site infections. Australas Med J 4:412–417. [cited 2018 20]. CrossRefGoogle Scholar
  12. 12.
    Alatoom AA, Cazanave CJ, Cunningham SA, Ihde SM, Patel R (2012) Identification of non-diphtheriae corynebacterium by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:160–163. CrossRefGoogle Scholar
  13. 13.
    Roy M, Ahmad S (2016) Rare case of Corynebacterium striatum septic arthritis. BMJ Case Rep 2016.
  14. 14.
    Boltin D, Katzir M, Bugoslavsky V, Yalashvili I, Brosh-Nissimov T, Fried M et al (2009) Corynebacterium striatum - a classic pathogen eluding diagnosis. Eur J Intern Med 20:e49–e52 1 [cited 2018 20]CrossRefGoogle Scholar
  15. 15.
    Roux A-L, Sivadon-Tardy V, Bauer T, Lortat-Jacob A, Herrmann J-L, Gaillard J-L et al (2011) Diagnosis of prosthetic joint infection by beadmill processing of a periprosthetic specimen. Clin Microbiol Infect 17:447–450. [cited 2017 23]. CrossRefGoogle Scholar
  16. 16.
    European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2018) EUCAST: clinical breakpoints. [cited 2018 7];
  17. 17.
    Cone LA, Curry N, Wuestoff MA, O’Connell SJ, Feller JF (1998) Septic synovitis and arthritis due to Corynebacterium striatum following an accidental scalpel injury. Clin Infect Dis 27:1532–1533. [cited 2018 20]. CrossRefGoogle Scholar
  18. 18.
    Fernández-Ayala M, Nan DN, Fariñas MC. Vertebral osteomyelitis due to Corynebacterium striatum. Am J Med [Internet] 2001 1 [cited 2018 20];111:167. doi:
  19. 19.
    Feced Olmos CM, Alegre Sancho JJ, Ivorra Cortés J, Román Ivorra JA. Artritis séptica de hombro debida a Corynebacterium striatum. Reumatol. Clínica [Internet] 2013 [cited 2018 20];9:383. doi: 10.1016/j.reuma.2013.02.006
  20. 20.
    Westblade LF, Shams F, Duong S, Tariq O, Bulbin A, Klirsfeld D et al (2014) Septic arthritis of a native knee joint due to Corynebacterium striatum. J Clin Microbiol 52:1786–1788. [cited 2018 20]. CrossRefGoogle Scholar
  21. 21.
    Verma R, Kravitz GR (2016) Corynebacterium striatum empyema and osteomyelitis in a patient with advanced rheumatoid arthritis. BMJ Case Rep 2016. [cited 2018 20].
  22. 22.
    Beltrán-Arroyave C, Díaz-Díaz A, Loaiza-Díaz N (2016) Osteomielitis crónica por Corynebacterium striatum en una adolescente. Rev Chil Infectología 33:696–699. [cited 2018 20]. CrossRefGoogle Scholar
  23. 23.
    Molina Collada J, Rico Nieto A, Díaz de Bustamante Ussia M, Balsa Criado A (2017) Artritis séptica de rodilla nativa por Corynebacterium striatum. Reumatol Clín 7;doi: [cited 2018 21].
  24. 24.
    Fernández-Esgueva M, Pérez-Jimeno N, Roda-Rojo V, Ferrer-Cerón I (2018; [cited 2018 20]) Infección de prótesis de rodilla por Corynebacterium striatum. Enferm Infecc Microbiol Clin.
  25. 25.
    Ferry T, Chauvelot P, Triffault-Fillit C, Braun E, Perpoint T, Laurent F et al Corynebacterium bone and joint infection (BJI): a retrospective cohort study in a reference center for BJI management [internet]. In: IDWeek 2017. Idsa; 2017 [cited 2018 13]
  26. 26.
    Konrad R, Berger A, Huber I, Boschert V, Hormansdorfer S, Busch U et al (2010) Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry as a tool for rapid diagnosis of potentially toxigenic Corynebacterium species in the laboratory management of diphtheria-associated bacteria. Euro Surveill 15Google Scholar
  27. 27.
    Clinical and Laboratory Standards Institute (CLSI). M45 - methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious Bacteria - 3rd edition. 2016 [cited 2018 7] Google Scholar
  28. 28.
    Martínez-Martínez L, Suárez AI, Winstanley J, Ortega MC, Bernard K (1995) Phenotypic characteristics of 31 strains of Corynebacterium striatum isolated from clinical samples. J Clin Microbiol 33:2458–2461 [cited 2018 7]Google Scholar
  29. 29.
    Alibi S, Ferjani A, Boukadida J, Cano ME, Fernández-Martínez M, Martínez-Martínez L et al (2017) Occurrence of Corynebacterium striatum as an emerging antibiotic-resistant nosocomial pathogen in a Tunisian hospital. Sci Rep 7:9704. [cited 2018 7]. CrossRefGoogle Scholar
  30. 30.
    Ract P, Piau-Couapel C, Compain F, Auzou M, Michon J, Cattoir V (2017) In vitro activity of tedizolid and comparator agents against gram-positive pathogens responsible for bone and joint infections. J Med Microbiol 66:1374–1378. CrossRefGoogle Scholar
  31. 31.
    Jones RN, Fritsche TR, Sader HS, Goldstein BP (2005) Antimicrobial spectrum and potency of dalbavancin tested against clinical isolates from Europe and North America (2003): initial results from an international surveillance protocol. J Chemother 17:593–600. CrossRefGoogle Scholar
  32. 32.
    Goldner NK, Bulow C, Cho K, Wallace M, Hsu F-F, Patti GJ et al (2018) Mechanism of high-level daptomycin resistance in Corynebacterium striatum. mSphere 3.
  33. 33.
    Werth BJ, Hahn WO, Butler-Wu SM, Rakita RM (2016) Emergence of high-level daptomycin resistance in corynebacterium striatum in two patients with left ventricular assist device infections. Microb Drug Resist 22:233–237.,,
  34. 34.
    McElvania TeKippe E, Thomas BS, Ewald GA, Lawrence SJ, Burnham CAD (2014) Rapid emergence of daptomycin resistance in clinical isolates of Corynebacterium striatum, a cautionary tale. Eur J Clin Microbiol Infect Dis 33:2199–2205. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Latifa Noussair
    • 1
  • Elsa Salomon
    • 2
  • Faten El Sayed
    • 1
    • 2
    • 3
  • Clara Duran
    • 4
  • Frédérique Bouchand
    • 5
  • Anne-Laure Roux
    • 2
  • Jean-Louis Gaillard
    • 1
    • 2
  • Thomas Bauer
    • 6
  • Martin Rottman
    • 1
  • Aurélien Dinh
    • 4
    Email author
  1. 1.Microbiology Department, Raymond Poincaré University HospitalAPHP, Referral Center for Bone and Joint InfectionGarchesFrance
  2. 2.Microbiology Department, Ambroise Paré University HospitalAPHP, Referral Center for Bone and Joint infectionBoulogne-BillancourtFrance
  3. 3.EPIMUMR INSERM UVSQ U1173 UFR Simone VeilMontigny-le-BretonneuxFrance
  4. 4.Infectious Disease Department, Raymond Poincaré University Hospital, APHP, Referral Center for Bone and Joint InfectionUVSQGarchesFrance
  5. 5.Pharmacy Department, Raymond Poincaré University HospitalAPHP, Referral Center for Bone and Joint InfectionGarchesFrance
  6. 6.Orthopaedic Surgery Department, Ambroise Paré University HospitalAPHP, Referral Center For Bone And Joint InfectionBoulogne-BillancourtFrance

Personalised recommendations