Advertisement

Acute spinal implant infection treated with debridement: does extended antibiotic treatment improve the prognosis?

  • Pau Bosch-Nicolau
  • Dolors Rodríguez-PardoEmail author
  • Carles Pigrau
  • Ferran Pellisé
  • Sleiman Haddad
  • Mayli Lung
  • Benito Almirante
Original Article

Abstract

The study aims to determine whether 8 weeks of antibiotics is non-inferior to 12 weeks in patients with acute deep spinal implant infection (SII). In the retrospective study of all SII cases (2009–2016), patients aged ≥ 15 years with microbiologically confirmed SII treated with debridement and implant retention were included. Whenever possible, tailored antibiotic treatment was used: rifampin/linezolid in gram-positive and quinolones in gram-negative infection. Patients were divided into short treatment course (8 weeks, ST group) and extended treatment (12 weeks, ET group). Primary outcome measure was percentage of cures at 1-year follow-up. One-hundred-twenty-four patients considered, 48 excluded based on the above criteria, leaving 76 patients, 28 ST and 48 ET. There were no differences in patient age, comorbidities, underlying pathologies, infection location, or surgery characteristics between groups. Surgery-to-debridement time was similar (18.5-day ST vs. 19-day ET; P = 0.96). Sixteen SII cases (21.1%) occurred with bloodstream infection. Pathogens found were Enterobacteriaceae (35, 46.1%), Staphylococcus aureus (29, 38.2%), coagulase-negative staphylococci (12, 15.8%), Pseudomonas aeruginosa (12, 15.8%), and Enterococcus faecalis (7, 9.2%). Twenty seven (35.5%) had polymicrobial infection. E. faecalis was more frequent in the ST group (7, 25% vs. 0; P < 0.001), and P. aeruginosa in ET (1, 3.6% vs. 11, 22.9%; P = 0.05). Five patients died of causes unrelated to SII. At 1-year follow-up, cure rates (21/26 ST, 80.8% vs. 39/45 ET, 86.7%; P = 0.52) and recurrences (2/26, 7.7% vs. 2/45, 4.4%; P = 0.62) were similar. Eight-week antimicrobial courses were not inferior to 12 weeks in patients with acute deep SII treated with prompt debridement, proper wound healing, and optimized antibiotics.

Keywords

Spinal infection Bone infection Prosthetic joint infections Antibiotic treatment duration 

Notes

Acknowledgments

We thank Celine Cavallo for the English language support.

Funding

This work was supported by Plan Nacional de I + D + i 2013–2016 and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación cooperativa, Ministerio de Economía, Industria y Competitividad, Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0003)—cofinanced by European Development Regional Fund “A way to achieve Europe,” Operative program Intelligent Growth 2014–2020.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Pull Ter Gunne AF, Cohen DB (2009) Incidence, prevalence, and analysis of risk factors for surgical site infection following adult spinal surgery. Spine (Phila Pa 1976) 34(13):1422–1428CrossRefGoogle Scholar
  2. 2.
    Kanafani ZA, Dakdouki GK, El-Dbouni O, Bawwab T, Kanj SS (2006) Surgical site infections following spinal surgery at a tertiary care center in Lebanon: incidence, microbiology, and risk factors. Scand J Infect Dis 38(8):589–592CrossRefGoogle Scholar
  3. 3.
    Yeramaneni S, Robinson C, Hostin R (2016) Impact of spine surgery complications on costs associated with management of adult spinal deformity. Curr Rev Musculoskelet Med 9(3):327–332CrossRefGoogle Scholar
  4. 4.
    Veeravagu A, Patil CG, Lad SP, Boakye M (2009) Risk factors for postoperative spinal wound infections after spinal decompression and fusion surgeries. Spine (Phila Pa 1976) 34(17):1869–1872CrossRefGoogle Scholar
  5. 5.
    Lazennec JY, Fourniols E, Lenoir T, Aubry A, Pissonnier ML, Issartel B et al (2011) Infections in the operated spine: update on risk management and therapeutic strategies. Orthop Traumatol Surg Res 97(6 SUPPL):S107–16Google Scholar
  6. 6.
    Núñez-Pereira S, Pellisé F, Rodríguez-Pardo D, Pigrau C, Bagó J, Villanueva C et al (2013) Implant survival after deep infection of an instrumented spinal fusion. Bone Joint J 95-B(8):1121–1126CrossRefGoogle Scholar
  7. 7.
    Lall RR, Wong AP, Lall RR, Lawton CD, Smith ZA, Dahdaleh NS (2015) Evidence-based management of deep wound infection after spinal instrumentation. J Clin Neurosci 22(2):238–242CrossRefGoogle Scholar
  8. 8.
    Bachy M, Bouyer B, Vialle R (2012) Infections after spinal correction and fusion for spinal deformities in childhood and adolescence. Int Orthop 36(2):465–469CrossRefGoogle Scholar
  9. 9.
    Kowalski TJ, Berbari EF, Huddleston PM, Steckelberg JM, Mandrekar JN, Osmon DR (2007) The management and outcome of spinal implant infections: contemporary retrospective cohort study. Clin Infect Dis 44(7):913–920CrossRefGoogle Scholar
  10. 10.
    Dubée V, Lenoir T, Leflon-Guibout V, Briere-Bellier C, Guigui P, Fantin B (2012) Three-month antibiotic therapy for early-onset postoperative spinal implant infections. Clin Infect Dis 55(11):1481–1487CrossRefGoogle Scholar
  11. 11.
    Wille H, Dauchy FA, Desclaux A, Dutronc H, Vareil MO, Dubois V et al (2017) Efficacy of debridement, antibiotic therapy and implant retention within three months during postoperative instrumented spine infections. Infect Dis (Auckl) 49(4):261–267CrossRefGoogle Scholar
  12. 12.
    Fernandez-Gerlinger M, Arvieu R, Lebeaux D, Rouis K, Guigui P, Mainardi J et al (2018) Successful six-week antibiotic treatment for early surgical-site infections in spinal surgery. Clin Infect Dis.  https://doi.org/10.1093/cid/ciy805
  13. 13.
    Puhto AP, Puhto T, Syrjala H (2012) Short-course antibiotics for prosthetic joint infections treated with prosthesis retention. Clin Microbiol Infect 18(11):1143–1148CrossRefGoogle Scholar
  14. 14.
    Lora-Tamayo J, Euba G, Cobo J, Horcajada JP, Soriano A, Sandoval E et al (2016) Short- versus long-duration levofloxacin plus rifampicin for acute staphylococcal prosthetic joint infection managed with implant retention: a randomised clinical trial. Int J Antimicrob Agents 48(3):310–316CrossRefGoogle Scholar
  15. 15.
    Rodríguez-Pardo D, Pigrau C, Lora-Tamayo J, Soriano A, del Toro MD, Cobo J et al (2014) Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study. Clin Clin Microbiol Infect 20(11):O911–O919CrossRefGoogle Scholar
  16. 16.
    Chen S-H, Lee C-H, Huang K-C, Hsieh P-H, Tsai S-Y (2015) Postoperative wound infection after posterior spinal instrumentation: analysis of long-term treatment outcomes. Eur Spine J 24(3):561–570CrossRefGoogle Scholar
  17. 17.
    Ho C, Sucato DJ, Richards BS (2007) Risk factors for the development of delayed infections following posterior spinal fusion and instrumentation in adolescent idiopathic scoliosis patients. Spine (Phila Pa 1976) 32(20):2272–2277CrossRefGoogle Scholar
  18. 18.
    Olsen MA, Nepple JJ, Riew KD, Lenke LG, Bridwell KH, Mayfield J et al (2008) Risk factors for surgical site infection following orthopaedic spinal operations. J Bone Jt Surg Am Vol [Internet] 90(1):62–69CrossRefGoogle Scholar
  19. 19.
    Schuster JM, Rechtine G, Norvell DC, Dettori JR (2010) The influence of perioperative risk factors and therapeutic interventions on infection rates after spine surgery: a systematic review. Spine (Phila Pa 1976) 35(9 Suppl):S125–S137CrossRefGoogle Scholar
  20. 20.
    Mikhael MM, Huddleston PM, Nassr A (2009) Postoperative culture positive surgical site infections after the use of irradiated allograft, nonirradiated allograft, or autograft for spinal fusion. Spine (Phila Pa 1976) 34(22):2466–2468CrossRefGoogle Scholar
  21. 21.
    Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193CrossRefGoogle Scholar
  22. 22.
    Haddad S, Núñez-Pereira S, Pigrau C, Rodríguez-Pardo D, Vila-Casademunt A, Alanay A et al (2018) The impact of deep surgical site infection on surgical outcomes after posterior adult spinal deformity surgery: a matched control study. Eur Spine J 27(10):2518–2528CrossRefGoogle Scholar
  23. 23.
    Núñez-Pereira S, Pellisé F, Rodríguez-Pardo D, Pigrau C, Sánchez JM, Bagó J et al (2011) Individualized antibiotic prophylaxis reduces surgical site infections by gram-negative bacteria in instrumented spinal surgery. Eur Spine J 20(S3):397–402CrossRefGoogle Scholar
  24. 24.
    Senneville E, Joulie D, Legout L, Valette M, Dezeque H, Beltrand E et al (2011) Outcome and predictors of treatment failure in Total hip/knee prosthetic joint infections due to Staphylococcus aureus. Clin Infect Dis 53(4):334–340CrossRefGoogle Scholar
  25. 25.
    Lora-Tamayo J, Murillo O, Iribarren JA, Soriano A, Sánchez-Somolinos M, Baraia-Etxaburu JM et al (2013) A large multicenter study of methicillin-susceptible and methicillin-resistant Staphylococcus aureus prosthetic joint infections managed with implant retention. Clin Infect Dis 56(2):182–194CrossRefGoogle Scholar
  26. 26.
    Fernandes A, Dias M (2013) The microbiological profiles of infected prosthetic implants with an emphasis on the organisms which form biofilms. J Clin Diagn Res 7(2):219–223Google Scholar
  27. 27.
    López-Sánchez C, Rodríguez-Pardo D, Pigrau C, Corona PS, Amat C, Lung M et al (2016) Teicoplanin—an old new treatment for enterococcal prosthetic joint infections. J Inf Secur 72(6):764–766Google Scholar
  28. 28.
    Hahn F, Zbinden R, Min K (2005) Late implant infections caused by Propionibacterium acnes in scoliosis surgery. Eur Spine J 14(8):783–788CrossRefGoogle Scholar
  29. 29.
    Bémer P, Corvec S, Tariel S, Asseray N, Boutoille D, Langlois C et al (2008) Significance of Propionibacterium acnes-positive samples in spinal instrumentation. Spine (Phila Pa 1976) 33(26):E971–E976CrossRefGoogle Scholar
  30. 30.
    Vilchez H, Campins A, Cobo J, Al E (2018) Prosthetic shoulder joint infection by Propionibacterium acnes. Presented in the ESCMID meeting in Madrid, SpainGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Infectious Diseases DepartmentUniversity Hospital Vall d’Hebron, Universitat Autónoma de BarcelonaBarcelonaSpain
  2. 2.Red Española de Investigación en Patología Infecciosa (REIPI)MadridSpain
  3. 3.Orthopaedic Surgery Department (Spinal Unit)University Hospital Vall d’Hebrón, Universitat Autónoma de BarcelonaBarcelonaSpain
  4. 4.Microbiology DepartmentUniversity Hospital Vall d’Hebron, Universitat Autónoma de BarcelonaBarcelonaSpain

Personalised recommendations