Advertisement

Plasmonic gold chips for the diagnosis of Toxoplasma gondii, CMV, and rubella infections using saliva with serum detection precision

  • Xiaoyang Li
  • Christelle PomaresEmail author
  • François Peyron
  • Cynthia J. Press
  • Raymund Ramirez
  • Gonfrier Geraldine
  • Isabelle Cannavo
  • Emmanuelle Chapey
  • Pauline Levigne
  • Martine Wallon
  • Jose G. MontoyaEmail author
  • Hongjie DaiEmail author
Original Article
  • 62 Downloads

Abstract

Sampling the blood compartment by an invasive procedure such as phlebotomy is the most common approach used for diagnostic purposes. However, phlebotomy has several drawbacks including pain, vasovagal reactions, and anxiety. Therefore, alternative approaches should be tested to minimize patient’s discomfort. Saliva is a reasonable compartment; when obtained, it generates little or no anxiety. We setup a multiplexed serology assay for detection of Toxoplasma gondii IgG and IgM, rubella IgG, and CMV IgG, in serum, whole blood, and saliva using novel plasmonic gold (pGOLD) chips. pGOLD test results in serum, whole blood, and saliva were compared with commercial kits test results in serum. One hundred twenty serum/saliva sets (Lyon) and 28 serum/whole blood/saliva sets (Nice) from France were tested. In serum and whole blood, sensitivity and specificity of multiplex T. gondii, CMV, and rubella IgG were 100% in pGOLD when compared to commercial test results in serum. In saliva, sensitivity and specificity for T. gondii and rubella IgG were 100%, and for CMV IgG, sensitivity and specificity were 92.9% and 100%, respectively, when compared to commercial test results in serum. We were also able to detect T. gondii IgM in saliva with sensitivity and specificity of 100% and 95.4%, respectively, when compared to serum test results. Serological testing by multiplex pGOLD assay for T. gondii, rubella, and CMV in saliva is reliable and likely to be more acceptable for systematic screening of pregnant women, newborn, and immunocompromised patients.

Keywords

Saliva Toxoplasmosis Cytomegalovirus Rubella Plasmonic gold chips Multiplexed serologies 

Notes

Funding information

Christelle Pomares received a grant from the “Philippe Foundation Inc.,” the “Association des amis de la Faculté de Médecine de Nice,” and from REDPIT (Recherche Et Developpement En Pathologie Infectieuse Et Tropicale) association. These associations allowed a personal financial support during the post-doctoral period in the USA.

Compliance with ethical standards

This study was approved by the local ethical committees for the prospective collection of samples (Comité de protection des personnes (CPP) Teaching hospitals of Lyon and Nice, France).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10096_2019_3487_MOESM1_ESM.pptx (212 kb)
Fig. S1 (PPTX 212 kb)
10096_2019_3487_MOESM2_ESM.pptx (155 kb)
Fig. S2 (PPTX 155 kb)
10096_2019_3487_MOESM3_ESM.pptx (229 kb)
Fig. S3 (PPTX 228 kb)
10096_2019_3487_MOESM4_ESM.pptx (158 kb)
Fig. S4 (PPTX 158 kb)

References

  1. 1.
    Yoshizawa JM, Schafer CA, Schafer JJ, Farrell JJ, Paster BJ, Wong DTW (2013) Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev 26:781–791.  https://doi.org/10.1128/CMR.00021-13 CrossRefGoogle Scholar
  2. 2.
    Exum NG, Pisanic N, Granger DA, Schwab KJ, Detrick B, Kosek M et al (2016) Use of pathogen-specific antibody biomarkers to estimate waterborne infections in population-based settings. Curr Environ Health Rep 3:322–334.  https://doi.org/10.1007/s40572-016-0096-x CrossRefGoogle Scholar
  3. 3.
    Stekler JD, Ure G, O’Neal JD, Lane A, Swanson F, Maenza J et al (2016) Performance of determine combo and other point-of-care HIV tests among Seattle MSM. J Clin Virol 76:8–13.  https://doi.org/10.1016/j.jcv.2015.12.011 CrossRefGoogle Scholar
  4. 4.
    Augustine SAJ (2016) Towards universal screening for toxoplasmosis: rapid, cost-effective, and simultaneous detection of anti-Toxoplasma IgG, IgM, and IgA antibodies by use of very small serum volumes. J Clin Microbiol 54:1684–1685.  https://doi.org/10.1128/JCM.00913-16 CrossRefGoogle Scholar
  5. 5.
    Li X, Pomares C, Gonfrier G, Koh B, Zhu S, Gong M et al (2016) Multiplexed anti-Toxoplasma IgG, IgM, and IgA assay on plasmonic gold chips: towards making mass screening possible with dye test precision. J Clin Microbiol 54:1726–1733.  https://doi.org/10.1128/JCM.03371-15 CrossRefGoogle Scholar
  6. 6.
    Pomares C, Zhang B, Arulkumar S, Gonfrier G, Marty P, Zhao S et al (2017) Validation of IgG, IgM multiplex plasmonic gold platform in French clinical cohorts for the serodiagnosis and follow up of Toxoplasma gondii infection. Diagn Microbiol Infect Dis [cited 2016 28]; http://www.sciencedirect.com/science/article/pii/S0732889316302863.  https://doi.org/10.1016/j.diagmicrobio.2016.09.001
  7. 7.
    Yazigi A, Pecoulas AED, Vauloup-Fellous C, Grangeot-Keros L, Ayoubi J-M, Picone O (2016) Fetal and neonatal abnormalities due to congenital rubella syndrome: a review of literature. J Matern Fetal Neonatal Med 22(0):1–5.  https://doi.org/10.3109/14767058.2016.1169526 Google Scholar
  8. 8.
    Hui L, Wood G (2015) Perinatal outcome after maternal primary cytomegalovirus infection in the first trimester: a practical update and counseling aid. Prenat Diagn 35:1–7.  https://doi.org/10.1002/pd.4497 CrossRefGoogle Scholar
  9. 9.
    Picone O, Grangeot-Keros L, Senat M, Fuchs F, Bouthry E, Ayoubi J et al (2016) Cytomegalovirus non-primary infection during pregnancy. Can serology help with diagnosis? J Matern Fetal Neonatal Med 5:1–4.  https://doi.org/10.3109/14767058.2016.1169521 Google Scholar
  10. 10.
    Chapey E, Meroni V, Kieffer F, Bollani L, Ecochard R, Garcia P et al (2015) Use of IgG in oral fluid to monitor infants with suspected congenital toxoplasmosis. Clin Vaccine Immunol 22:398–403.  https://doi.org/10.1128/CVI.00552-14 CrossRefGoogle Scholar
  11. 11.
    Sabin AB, Feldman HA (1948) Dyes as microchemical indicators of a new immunity phenomenon affecting a protozoon parasite (toxoplasma). Science 108:660–663.  https://doi.org/10.1126/science.108.2815.660 CrossRefGoogle Scholar
  12. 12.
    Zhang B, Yang J, Zou Y, Gong M, Chen H, Hong G et al (2014) Plasmonic micro-beads for fluorescence enhanced, multiplexed protein detection with flow cytometry. Chem Sci 26(5):4070–4075.  https://doi.org/10.1039/C4SC01206B CrossRefGoogle Scholar
  13. 13.
    Tabakman SM, Lau L, Robinson JT, Price J, Sherlock SP, Wang H et al (2011) Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat Commun 2:466.  https://doi.org/10.1038/ncomms1477 CrossRefGoogle Scholar
  14. 14.
    Koh B, Li X, Zhang B, Yuan B, Lin Y, Antaris AL et al (2016) Visible to near-infrared fluorescence enhanced cellular imaging on plasmonic gold chips. Small 27(12):457–465.  https://doi.org/10.1002/smll.201502182 CrossRefGoogle Scholar
  15. 15.
    Zhang B, Price J, Hong G, Tabakman SM, Wang H, Jarrell JA et al (2013) Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence. Nano Res 6:113–120.  https://doi.org/10.1007/s12274-012-0286-2 CrossRefGoogle Scholar
  16. 16.
    Zhang B, Kumar RB, Dai H, Feldman BJ (2014) A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes. Nat Med 20:948–953.  https://doi.org/10.1038/nm.3619 CrossRefGoogle Scholar
  17. 17.
    Pomares C, Montoya JG (2016) Laboratory diagnosis of congenital toxoplasmosis. J Clin Microbiol 54:2448–2454.  https://doi.org/10.1128/JCM.00487-16 CrossRefGoogle Scholar
  18. 18.
    Cortina-Borja M, Tan HK, Wallon M, Paul M, Prusa A, Buffolano W et al (2010) Prenatal treatment for serious neurological sequelae of congenital toxoplasmosis: an observational prospective cohort study. PLoS Med 7.  https://doi.org/10.1371/journal.pmed.1000351
  19. 19.
    Hotop A, Hlobil H, Gross U (2012) Efficacy of rapid treatment initiation following primary Toxoplasma gondii infection during pregnancy. Clin Infect Dis 54:1545–1552.  https://doi.org/10.1093/cid/cis234 CrossRefGoogle Scholar
  20. 20.
    Kieffer F, Wallon M, Garcia P, Thulliez P, Peyron F, Franck J (2008) Risk factors for retinochoroiditis during the first 2 years of life in infants with treated congenital toxoplasmosis. Pediatr Infect Dis J 27:27–32.  https://doi.org/10.1097/INF.0b013e318134286d CrossRefGoogle Scholar
  21. 21.
    Prusa A-R, Kasper DC, Pollak A, Gleiss A, Waldhoer T, Hayde M (2015) The Austrian Toxoplasmosis Register, 1992-2008. Clin Infect Dis 15(60):e4–e10.  https://doi.org/10.1093/cid/ciu724 CrossRefGoogle Scholar
  22. 22.
    Wallon M, Peyron F, Cornu C, Vinault S, Abrahamowicz M, Kopp CB et al (2013) Congenital Toxoplasma infection: monthly prenatal screening decreases transmission rate and improves clinical outcome at age 3 years. Clin Infect Dis 56:1223–1231.  https://doi.org/10.1093/cid/cit032 CrossRefGoogle Scholar
  23. 23.
    SYROCOT (Systematic Review on Congenital Toxoplasmosis) study group, Thiébaut R, Leproust S, Chêne G, Gilbert R (2007) Effectiveness of prenatal treatment for congenital toxoplasmosis: a meta-analysis of individual patients’ data. Lancet 369:115–122.  https://doi.org/10.1016/S0140-6736(07)60072-5 CrossRefGoogle Scholar
  24. 24.
    Carlson A, Norwitz ER, Stiller RJ (2010) Cytomegalovirus infection in pregnancy: should all women be screened? Rev Obstet Gynecol 3:172–179Google Scholar
  25. 25.
    Rawlinson WD, Hamilton ST, van Zuylen WJ (2016) Update on treatment of cytomegalovirus infection in pregnancy and of the newborn with congenital cytomegalovirus. Curr Opin Infect Dis 29:615–624.  https://doi.org/10.1097/QCO.0000000000000317 CrossRefGoogle Scholar
  26. 26.
    Rawlinson WD, Boppana SB, Fowler KB, Kimberlin DW, Lazzarotto T, Alain S et al (2017) Congenital cytomegalovirus infection in pregnancy and the neonate: consensus recommendations for prevention, diagnosis, and therapy. Lancet Infect Dis 17:e177–e188.  https://doi.org/10.1016/S1473-3099(17)30143-3 CrossRefGoogle Scholar
  27. 27.
    Bouthry E, Picone O, Hamdi G, Grangeot-Keros L, Ayoubi J-M, Vauloup-Fellous C (2014) Rubella and pregnancy: diagnosis, management and outcomes. Prenat Diagn 34:1246–1253.  https://doi.org/10.1002/pd.4467 CrossRefGoogle Scholar
  28. 28.
    Stillwaggon E, Carrier CS, Sautter M, McLeod R (2011) Maternal serologic screening to prevent congenital toxoplasmosis: a decision-analytic economic model. PLoS Negl Trop Dis 5:e1333.  https://doi.org/10.1371/journal.pntd.0001333 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaoyang Li
    • 1
  • Christelle Pomares
    • 2
    Email author
  • François Peyron
    • 3
  • Cynthia J. Press
    • 4
  • Raymund Ramirez
    • 4
  • Gonfrier Geraldine
    • 5
  • Isabelle Cannavo
    • 5
  • Emmanuelle Chapey
    • 6
  • Pauline Levigne
    • 3
  • Martine Wallon
    • 3
  • Jose G. Montoya
    • 4
    • 7
    Email author
  • Hongjie Dai
    • 1
    Email author
  1. 1.Department of ChemistryStanford UniversityStanfordUSA
  2. 2.Service de Parasitologie Mycologie, Centre Hospitalier Universitaire de Nice, INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, Faculté de MédecineVirulence microbienne et signalisation inflammatoire – Université de la Côte d’AzurNice, cedex 3France
  3. 3.Institut de Parasitologie et de Mycologie MédicaleHôpital de la Croix RousseLyonFrance
  4. 4.Palo Alto Medical Foundation Toxoplasma Serology LaboratoryPalo AltoUSA
  5. 5.Service de VirologieCentre Hospitalier Universitaire de NiceNiceFrance
  6. 6.Emerging Pathogens Laboratory - Fondation Mérieux, Centre, International de Recherche en Infectiologie (CIRI) Inserm U1111, CNRS UMR5308, ENS de LyonUCBL1LyonFrance
  7. 7.Division of Infectious Diseases, Department of MedicineStanford UniversityStanfordUSA

Personalised recommendations