Advertisement

Management of adult Clostridium difficile digestive contaminations: a literature review

  • Fanny Mathias
  • Christophe Curti
  • Marc Montana
  • Charléric Bornet
  • Patrice Vanelle
Review

Abstract

Clostridium difficile infections (CDI) dramatically increased during the last decade and cause a major public health problem. Current treatments are limited by the high disease recurrence rate, severity of clinical forms, disruption of the gut microbiota, and colonization by vancomycin-resistant enterococci (VRE). In this review, we resumed current treatment options from official recommendation to promising alternatives available in the management of adult CDI, with regard to severity and recurring or non-recurring character of the infection. Vancomycin remains the first-line antibiotic in the management of mild to severe CDI. The use of metronidazole is discussed following the latest US recommendations that replaced it by fidaxomicin as first-line treatment of an initial episode of non-severe CDI. Fidaxomicin, the most recent antibiotic approved for CDI in adults, has several advantages compared to vancomycin and metronidazole, but its efficacy seems limited in cases of multiple recurrences. Innovative therapies such as fecal microbiota transplantation (FMT) and antitoxin antibodies were developed to limit the occurrence of recurrence of CDI. Research is therefore very active, and new antibiotics are being studied as surotomycin, cadazolid, and rinidazole.

Keywords

Clostridium difficile Fidaxomicin Fecal microbiota transplantation Antitoxin antibodies Surotomycin Cadazolid 

Notes

References

  1. 1.
    Hall IC, O’Toole E (1935) Intestinal flora in new-born infants: with a description of a new pathogenic anaerobe, bacillus difficilis. Am J Dis Child 49:390–402.  https://doi.org/10.1001/archpedi.1935.01970020105010 CrossRefGoogle Scholar
  2. 2.
    Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ (2016) Clostridium difficile infection. Nat Rev Dis Primer 2:16020.  https://doi.org/10.1038/nrdp.2016.20 CrossRefGoogle Scholar
  3. 3.
    Svenungsson B, Burman LG, Jalakas-Pornull K, Lagergren A, Struwe J, Akerlund T (2003) Epidemiology and molecular characterization of clostridium difficile strains from patients with diarrhea: low disease incidence and evidence of limited cross-infection in a swedish teaching hospital. J Clin Microbiol 41:4031–4037.  https://doi.org/10.1128/JCM.41.9.4031-4037.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
    Zilberberg MD, Shorr AF, Jesdale WM, Tjia J, Lapane K (2017) Recurrent Clostridium difficile infection among Medicare patients in nursing homes: a population-based cohort study. Medicine (Baltimore) 96:e6231.  https://doi.org/10.1097/MD.0000000000006231 CrossRefGoogle Scholar
  7. 7.
    Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, Frost E, McDonald, L. C (2005) Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366:1079–1084.  https://doi.org/10.1016/S0140-6736(05)67420-X CrossRefGoogle Scholar
  8. 8.
    He M, Miyajima F, Roberts P, Ellison L, Pickard DJ, Martin MJ, Connor TR, Harris SR, Fairley D, Bamford KB, D’Arc S, Brazier J, Brown D, Coia JE, Douce G, Gerding D, Kim HJ, Koh TH, Kato H, Senoh M, Louie T, Michell S, Butt E, Peacock SJ, Brown NM, Riley T, Songer G, Wilcox M, Pirmohamed M, Kuijper E, Hawkey P, Wren BW, Dougan G, Parkhill J, Lawley TD (2013) Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet 45:109–113.  https://doi.org/10.1038/ng.2478 CrossRefPubMedGoogle Scholar
  9. 9.
    Hensgens MPM, Goorhuis A, Dekkers OM, van Benthem BHB, Kuijper EJ (2013) All-cause and disease-specific mortality in hospitalized patients with Clostridium difficile infection: a multicenter cohort study. Clin Infect Dis 56:1108–1116.  https://doi.org/10.1093/cid/cis1209 CrossRefPubMedGoogle Scholar
  10. 10.
    Cohen SH, Gerding DN, Johnson S, Kelly CP, Loo VG, McDonald LC, Pepin J, Wilcox MH (2010) Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the Society for Healthcare Epidemiology of America (SHEA) and the Infectious Diseases Society of America (IDSA). Infect Control Hosp Epidemiol 31:431–455.  https://doi.org/10.1086/651706 CrossRefPubMedGoogle Scholar
  11. 11.
    Delmée M, Vandercam B, Avesani V, Michaux JL (1987) Epidemiology and prevention of Clostridium difficile infections in a leukemia unit. Eur J Clin Microbiol 6:623–627CrossRefGoogle Scholar
  12. 12.
    Johnson S, Homann SR, Bettin KM, Quick JN, Clabots CR, Peterson LR, Gerding DN (1992) Treatment of asymptomatic Clostridium difficile carriers (fecal excretors) with vancomycin or metronidazole: a randomized, placebo-controlled trial. Ann Intern Med 117:297–302.  https://doi.org/10.7326/0003-4819-117-4-297 CrossRefPubMedGoogle Scholar
  13. 13.
    McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, Dubberke ER, Garey KW, Gould CV, Kelly C, Loo V, Shaklee Sammons J, Sandora TJ, Wilcox MH (2018) Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis 66:987–994.  https://doi.org/10.1093/cid/ciy149 CrossRefPubMedGoogle Scholar
  14. 14.
    Rubin ZA, Martin EM, Allyn P (2018) Primary prevention of Clostridium difficile-associated diarrhea: current controversies and future tools. Curr Infect Dis Rep 20:32.  https://doi.org/10.1007/s11908-018-0639-4 CrossRefPubMedGoogle Scholar
  15. 15.
    Debast SB, Bauer MP, Kuijper EJ (2014) European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clin. Microbiol. Infect.20:1–26.  https://doi.org/10.1111/1469-0691.12418 CrossRefGoogle Scholar
  16. 16.
    Modena S, Gollamudi S, Friedenberg F (2006) Continuation of antibiotics is associated with failure of metronidazole for Clostridium difficile-associated diarrhea. J Clin Gastroenterol 40:49–54CrossRefGoogle Scholar
  17. 17.
    Wilcox MH, Chalmers JD, Nord CE, Freeman J, Bouza E (2017) Role of cephalosporins in the era of Clostridium difficile infection. J Antimicrob Chemother 72:1–18.  https://doi.org/10.1093/jac/dkw385 CrossRefPubMedGoogle Scholar
  18. 18.
    Teasley DG, Gerding DN, Olson MM, Peterson LR, Gebhard RL, Schwartz MJ, Lee JT (1983) Prospective randomised trial of metronidazole versus vancomycin for Clostridium-difficile-associated diarrhoea and colitis. Lancet Lond Engl 2:1043–1046CrossRefGoogle Scholar
  19. 19.
    Wenisch C, Parschalk B, Hasenhündl M, Hirschl AM, Graninger W (1996) Comparison of vancomycin, teicoplanin, metronidazole, and fusidic acid for the treatment of Clostridium difficile-associated diarrhea. Clin Infect Dis Off Publ Infect Dis Soc Am 22:813–818CrossRefGoogle Scholar
  20. 20.
    Zar FA, Bakkanagari SR, Moorthi KMLST, Davis MB (2007) A comparison of vancomycin and metronidazole for the treatment of Clostridium difficile-associated diarrhea, stratified by disease severity. Clin Infect Dis 45:302–307.  https://doi.org/10.1086/519265 CrossRefPubMedGoogle Scholar
  21. 21.
    Johnson S, Louie TJ, Gerding DN, Cornely OA, Chasan-Taber S, Fitts D, Gelone SP, Broom C, Davidson DM (2014) Vancomycin, metronidazole, or tolevamer for Clostridium difficile infection: results from two multinational, randomized, controlled trials. Clin Infect Dis 59:345–354.  https://doi.org/10.1093/cid/ciu313 CrossRefPubMedGoogle Scholar
  22. 22.
    Obuch-Woszczatyński P, Lachowicz D, Schneider A, Mól A, Pawłowska J, Ożdżeńska-Milke E, Pruszczyk P, Wultańska D, Młynarczyk G, Harmanus C, Kuijper EJ, van Belkum A, Pituch H (2014) Occurrence of Clostridium difficile PCR-ribotype 027 and it’s closely related PCR-ribotype 176 in hospitals in Poland in 2008–2010. Anaerobe 28:13–17.  https://doi.org/10.1016/j.anaerobe.2014.04.007 CrossRefPubMedGoogle Scholar
  23. 23.
    Banawas SS (2018) Clostridium difficile infections: a global overview of drug sensitivity and resistance mechanisms. Biomed Res Int 2018:1–9.  https://doi.org/10.1155/2018/8414257 CrossRefGoogle Scholar
  24. 24.
    Aslam S, Hamill RJ, Musher DM (2005) Treatment of Clostridium difficile-associated disease: old therapies and new strategies. Lancet Infect Dis 5:549–557.  https://doi.org/10.1016/S1473-3099(05)70215-2 CrossRefPubMedGoogle Scholar
  25. 25.
    Pelaez T, Cercenado E, Alcala L, Marin M, Martin-Lopez A, Martinez-Alarcon J, Catalan P, Sanchez-Somolinos M, Bouza E (2008) Metronidazole resistance in Clostridium difficile is heterogeneous. J Clin Microbiol 46:3028–3032.  https://doi.org/10.1128/JCM.00524-08 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Tickler IA, Goering RV, Whitmore JD, Lynn ANW, Persing DH, Tenover FC (2014) Strain types and antimicrobial resistance patterns of Clostridium difficile isolates from the United States, 2011 to 2013. Antimicrob Agents Chemother 58:4214–4218.  https://doi.org/10.1128/AAC.02775-13 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bartlett JG (2008) The case for vancomycin as the preferred drug for treatment of Clostridium difficile infection. Clin Infect Dis 46:1489–1492.  https://doi.org/10.1086/587654 CrossRefPubMedGoogle Scholar
  28. 28.
    Al-Nassir WN, Sethi AK, Li Y, Pultz MJ, Riggs MM, Donskey CJ (2008) Both oral metronidazole and oral vancomycin promote persistent overgrowth of vancomycin-resistant enterococci during treatment of Clostridium difficile-associated disease. Antimicrob Agents Chemother 52:2403–2406.  https://doi.org/10.1128/AAC.00090-08 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
  30. 30.
    Louie TJ, Miller MA, Mullane KM, Weiss K, Lentnek A, Golan Y, Gorbach S, Sears P, Shue YK (2011) Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med 364:422–431.  https://doi.org/10.1056/NEJMoa0910812 CrossRefPubMedGoogle Scholar
  31. 31.
    Cornely OA, Crook DW, Esposito R, Poirier A, Somero MS, Weiss K, Sears P, Gorbach S (2012) Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA: a double-blind, non-inferiority, randomised controlled trial. Lancet Infect Dis 12:281–289.  https://doi.org/10.1016/S1473-3099(11)70374-7 CrossRefPubMedGoogle Scholar
  32. 32.
    Thabit AK, Alam MJ, Khaleduzzaman M, Garey KW, Nicolau DP (2016) A pilot study to assess bacterial and toxin reduction in patients with Clostridium difficile infection given fidaxomicin or vancomycin. Ann Clin Microbiol Antimicrob 15:22.  https://doi.org/10.1186/s12941-016-0140-6 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Guery B, Menichetti F, Anttila V-J, Adomakoh N, Aguado JM, Bisnauthsing K, Georgopali A, Goldenberg SD, Karas A, Kazeem G, Longshaw C, Palacios-Fabrega JA, Cornely OA, Vehreschild MJGT (2018) Extended-pulsed fidaxomicin versus vancomycin for Clostridium difficile infection in patients 60 years and older (EXTEND): a randomised, controlled, open-label, phase 3b/4 trial. Lancet Infect Dis 18:296–307.  https://doi.org/10.1016/S1473-3099(17)30751-X CrossRefPubMedGoogle Scholar
  34. 34.
    Mikamo H, Tateda K, Yanagihara K, Kusachi S, Takesue Y, Miki T, Oizumi Y, Gamo K, Hashimoto A, Toyoshima J, Kato K (2018) Efficacy and safety of fidaxomicin for the treatment of Clostridioides (Clostridium) difficile infection in a randomized, double-blind, comparative phase III study in Japan. J Infect Chemother 24:744–752.  https://doi.org/10.1016/j.jiac.2018.05.010 CrossRefPubMedGoogle Scholar
  35. 35.
    Louie TJ, Emery J, Krulicki W, Byrne B, Mah M (2009) OPT-80 eliminates Clostridium difficile and is sparing of bacteroides species during treatment of C. difficile infection. Antimicrob. Agents Chemother 53:261–263.  https://doi.org/10.1128/AAC.01443-07 CrossRefGoogle Scholar
  36. 36.
    Louie TJ, Cannon K, Byrne B, Emery J, Ward L, Eyben M, Krulicki W (2012) Fidaxomicin preserves the intestinal microbiome during and after treatment of Clostridium difficile infection (CDI) and reduces both toxin reexpression and recurrence of CDI. Clin Infect Dis 55:S132–S142.  https://doi.org/10.1093/cid/cis338 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Al Momani LA, Abughanimeh O, Boonpherg B, Gabriel JG, Young M (2018) Fidaxomicin vs vancomycin for the treatment of a first episode of Clostridium difficile infection: a meta-analysis and systematic review. Cureus 10:e2778.  https://doi.org/10.7759/cureus.2778 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nerandzic MM, Mullane K, Miller MA, Babakhani F, Donskey CJ (2012) Reduced acquisition and overgrowth of vancomycin-resistant enterococci and Candida species in patients treated with fidaxomicin versus vancomycin for Clostridium difficile infection. Clin Infect Dis 55:S121–S126.  https://doi.org/10.1093/cid/cis440 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Beinortas T, Burr NE, Wilcox MH, Subramanian V (2018) Comparative efficacy of treatments for Clostridium difficile infection: a systematic review and network meta-analysis. Lancet Infect Dis 18:1035–1044.  https://doi.org/10.1016/S1473-3099(18)30285-8 CrossRefPubMedGoogle Scholar
  40. 40.
    Watt M, Dinh A, Le Monnier A, Tilleul P (2017) Cost-effectiveness analysis on the use of fidaxomicin and vancomycin to treat Clostridium difficile infection in France. J Med Econ 20:678–686.  https://doi.org/10.1080/13696998.2017.1302946 CrossRefPubMedGoogle Scholar
  41. 41.
    Orenstein R (2012) Fidaxomicin failures in recurrent Clostridium difficile infection: a problem of timing. Clin Infect Dis 55:613–614.  https://doi.org/10.1093/cid/cis495 CrossRefPubMedGoogle Scholar
  42. 42.
    Pichenot M, Héquette-Ruz R, Le Guern R, Grandbastien B, Charlet C, Wallet F, Schiettecatte S, Loeuillet F, Guery B, Galperine T (2017) Fidaxomicin for treatment of Clostridium difficile infection in clinical practice: a prospective cohort study in a French University hospital. Infection 45:425–431.  https://doi.org/10.1007/s15010-017-0981-8 CrossRefPubMedGoogle Scholar
  43. 43.
    de Lalla F, Nicolin R, Rinaldi E, Scarpellini P, Rigoli R, Manfrin V, Tramarin A (1992) Prospective study of oral teicoplanin versus oral vancomycin for therapy of pseudomembranous colitis and Clostridium difficile-associated diarrhea. Antimicrob Agents Chemother 36:2192–2196CrossRefGoogle Scholar
  44. 44.
    Nelson RL, Suda KJ, Evans CT (2017) Antibiotic treatment for Clostridium difficile-associated diarrhoea in adults. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD004610.pub5
  45. 45.
    Wullt M (2004) A double-blind randomized controlled trial of fusidic acid and metronidazole for treatment of an initial episode of Clostridium difficile-associated diarrhoea. J Antimicrob Chemother 54:211–216.  https://doi.org/10.1093/jac/dkh278 CrossRefPubMedGoogle Scholar
  46. 46.
    Noren T, Wullt M, Akerlund T, Back E, Odenholt I, Burman LG (2006) Frequent emergence of resistance in Clostridium difficile during treatment of C. difficile-associated diarrhea with fusidic acid. Antimicrob. Agents Chemother 50:3028–3032.  https://doi.org/10.1128/AAC.00019-06 CrossRefGoogle Scholar
  47. 47.
    Barbut F, Decré D, Burghoffer B, Lesage D, Delisle F, Lalande V, Delmée M, Avesani V, Sano N, Coudert C, Petit JC (1999) Antimicrobial susceptibilities and serogroups of clinical strains of Clostridium difficile isolated in France in 1991 and 1997. Antimicrob Agents Chemother 43:2607–2611CrossRefGoogle Scholar
  48. 48.
    Lagrotteria D, Holmes S, Smieja M, Smaill F, Lee C (2006) Prospective, randomized inpatient study of oral metronidazole versus oral metronidazole and rifampin for treatment of primary episode of Clostridium difficile-associated diarrhea. Clin Infect Dis 43:547–552.  https://doi.org/10.1086/506354 CrossRefPubMedGoogle Scholar
  49. 49.
    Acocella G (1978) Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet 3:108–127.  https://doi.org/10.2165/00003088-197803020-00002 CrossRefPubMedGoogle Scholar
  50. 50.
    Young GP, Ward PB, Bayley N, Gordon D, Higgins G, Trapani JA, McDonald MI, Labrooy J, Hecker R (1985) Antibiotic-associated colitis due to Clostridium difficile: double-blind comparison of vancomycin with bacitracin. Gastroenterology 89:1038–1045CrossRefGoogle Scholar
  51. 51.
    Dudley MN, McLaughlin JC, Carrington G, Frick J, Nightingale CH, Quintiliani R (1986) Oral bacitracin vs vancomycin therapy for Clostridium difficile-induced diarrhea. A randomized double-blind trial Arch Intern Med 146:1101–1104CrossRefGoogle Scholar
  52. 52.
    Abad F, Calbo F, Zapater P, Rodríguez-Vilanova F, García-Pérez L-E, Sacristán JA (2000) Comparative pharmacoeconomic study of vancomycin and teicoplanin in intensive care patients. Int J Antimicrob Agents 15:65–71.  https://doi.org/10.1016/S0924-8579(00)00123-0 CrossRefPubMedGoogle Scholar
  53. 53.
    DePestel DD, Aronoff DM (2013) Epidemiology of Clostridium difficile infection. J Pharm Pract 26:464–475.  https://doi.org/10.1177/0897190013499521 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    McCoy RM, Klick A, Hill S, Dull RB (2016) Luminal toxin-binding agents for Clostridium difficile infection. J Pharm Pract 29:361–367.  https://doi.org/10.1177/0897190014566315 CrossRefPubMedGoogle Scholar
  55. 55.
    Louie TJ, Peppe J, Watt CK, Johnson D, Mohammed R, Dow G, Weiss K, Simon S, John JF, Garber G, Taber SC, Davidson DM (2006) Tolevamer, a novel nonantibiotic polymer, compared with vancomycin in the treatment of mild to moderately severe Clostridium difficile-associated diarrhea. Clin Infect Dis 43:411–420.  https://doi.org/10.1086/506349 CrossRefPubMedGoogle Scholar
  56. 56.
    Mogg GA, George RH, Youngs D, Johnson M, Thompson H, Burdon DW, Keighley MR (1982) Randomized controlled trial of colestipol in antibiotic-associated colitis. Br J Surg 69:137–139.  https://doi.org/10.1002/bjs.1800690306 CrossRefPubMedGoogle Scholar
  57. 57.
    Bolton RP, Culshaw MA (1986) Faecal metronidazole concentrations during oral and intravenous therapy for antibiotic associated colitis due to Clostridium difficile. Gut 27:1169–1172.  https://doi.org/10.1136/gut.27.10.1169 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Halsey J (2008) Current and future treatment modalities for Clostridium difficile -associated disease. Am J Health Syst Pharm 65:705–715.  https://doi.org/10.2146/ajhp070077 CrossRefPubMedGoogle Scholar
  59. 59.
    Chahine EB (2018) The rise and fall of metronidazole for Clostridium difficile infection. Ann Pharmacother 52:600–602.  https://doi.org/10.1177/1060028018757446 CrossRefPubMedGoogle Scholar
  60. 60.
    Chihara S, Shimizu R, Furukata S, Hoshino K (2011) Oral vancomycin may have significant absorption in patients with Clostridium difficile colitis. Scand J Infect Dis 43:149–150.  https://doi.org/10.3109/00365548.2010.513066 CrossRefPubMedGoogle Scholar
  61. 61.
    Gomceli U, Vangala S, Zeana C, Kelly PJ, Singh M (2018) An unusual case of ototoxicity with use of oral vancomycin. Case Rep Infect Dis 2018:1–3.  https://doi.org/10.1155/2018/2980913 CrossRefGoogle Scholar
  62. 62.
    Freeman J, Vernon J, Pilling S, Morris K, Nicholson S, Shearman S, Longshaw C, Wilcox MH (2018) The clos ER study: results from a three-year pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes, 2011–2014. Clin Microbiol Infect 24:724–731.  https://doi.org/10.1016/j.cmi.2017.10.008 CrossRefPubMedGoogle Scholar
  63. 63.
    Trubiano JA, Cheng AC, Korman TM, Roder C, Campbell A, May MLA, Blyth CC, Ferguson JK, Blackmore TK, Riley TV, Athan E (2016) Australasian Society of Infectious Diseases updated guidelines for the management of Clostridium difficile infection in adults and children in Australia and New Zealand: CDI management guidelines. Intern Med J 46:479–493.  https://doi.org/10.1111/imj.13027 CrossRefPubMedGoogle Scholar
  64. 64.
    Gergely Szabo B, Kadar B, Szidonia Lenart K, Dezsenyi B, Kunovszki P, Fried K, Kamotsay K, Nikolova R, Prinz G (2016) Use of intravenous tigecycline in patients with severe Clostridium difficile infection: a retrospective observational cohort study. Clin Microbiol Infect 22:990–995.  https://doi.org/10.1016/j.cmi.2016.08.017 CrossRefPubMedGoogle Scholar
  65. 65.
    LaSalvia MT, Branch-Elliman W, Snyder GM, Mahoney MV, Alonso CD, Gold HS, Wright SB (2017) Does adjunctive tigecycline improve outcomes in severe-complicated, nonoperative Clostridium difficile infection? Open Forum Infect Dis 4:264.  https://doi.org/10.1093/ofid/ofw264 CrossRefGoogle Scholar
  66. 66.
    Manea E, Sojo-Dorado J, Jipa RE, Benea SN, Rodríguez-Baño J, Hristea A (2018) The role of tigecycline in the management of Clostridium difficile infection: a retrospective cohort study. Clin Microbiol Infect 24:180–184.  https://doi.org/10.1016/j.cmi.2017.06.005 CrossRefPubMedGoogle Scholar
  67. 67.
    Thomas A, Khan F, Uddin N, Wallace MR (2014) Tigecycline for severe Clostridium difficile infection. Int J Infect Dis 26:171–172.  https://doi.org/10.1016/j.ijid.2014.04.025 CrossRefPubMedGoogle Scholar
  68. 68.
    Bishop EJ, Tiruvoipati R, Metcalfe J, Marshall C, Botha J, Kelley PG (2018) The outcome of patients with severe and severe-complicated Clostridium difficile infection treated with tigecycline combination therapy: a retrospective observational study: tigecycline combination therapy for CDI. Intern Med J 48:651–660.  https://doi.org/10.1111/imj.13742 CrossRefPubMedGoogle Scholar
  69. 69.
    Agwuh KN (2006) Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 58:256–265.  https://doi.org/10.1093/jac/dkl224 CrossRefPubMedGoogle Scholar
  70. 70.
    Ooijevaar RE, van Beurden YH, Terveer EM, Goorhuis A, Bauer MP, Keller JJ, Mulder CJJ, Kuijper EJ (2018) Update of treatment algorithms for Clostridium difficile infection. Clin Microbiol Infect 24:452–462.  https://doi.org/10.1016/j.cmi.2017.12.022 CrossRefPubMedGoogle Scholar
  71. 71.
    Petrosillo N, Granata G, Cataldo MA (2018) Novel antimicrobials for the treatment of Clostridium difficile infection. Front Med 5:1–16.  https://doi.org/10.3389/fmed.2018.00096 CrossRefGoogle Scholar
  72. 72.
    Anderson VR, Curran MP (2007) Nitazoxanide: a review of its use in the treatment of gastrointestinal infections. Drugs 67:1947–1967CrossRefGoogle Scholar
  73. 73.
    Musher DM, Logan N, Hamill RJ, DuPont HL, Lentnek A, Gupta A, Rossignol JF (2006) Nitazoxanide for the treatment of Clostridium difficile colitis. Clin Infect Dis 43:421–427.  https://doi.org/10.1086/506351 CrossRefPubMedGoogle Scholar
  74. 74.
    Musher DM, Logan N, Mehendiratta V, Melgarejo NA, Garud S, Hamill RJ (2007) Clostridium difficile colitis that fails conventional metronidazole therapy: response to nitazoxanide. J Antimicrob Chemother 59:705–710.  https://doi.org/10.1093/jac/dkl553 CrossRefPubMedGoogle Scholar
  75. 75.
    Musher DM, Logan N, Bressler AM, Johnson DP, Rossignol J (2009) Nitazoxanide versus vancomycin in Clostridium difficile infection: a randomized, double-blind study. Clin Infect Dis 48:e41–e46.  https://doi.org/10.1086/596552 CrossRefPubMedGoogle Scholar
  76. 76.
    Rafiullah F, Kanwal S, Majeed UM, Korsten MA, Cheema FH, Luthra M, Sohail MR (2011) Successful use of nitazoxanide in the treatment of recurrent Clostridium difficile infection. Case Rep.  https://doi.org/10.1136/bcr.04.2011.4123 Google Scholar
  77. 77.
    van Beurden YH, Nieuwdorp M, van de Berg PJEJ, Mulder CJJ, Goorhuis A (2017) Current challenges in the treatment of severe Clostridium difficile infection: early treatment potential of fecal microbiota transplantation. Ther Adv Gastroenterol 10:373–381.  https://doi.org/10.1177/1756283X17690480 CrossRefGoogle Scholar
  78. 78.
    Fischer M, Sipe B, Cheng YW, Phelps E, Rogers N, Sagi S, Bohm M, Xu H, Kassam Z (2017) Fecal microbiota transplant in severe and severe-complicated Clostridium difficile : a promising treatment approach. Gut Microbes 8:289–302.  https://doi.org/10.1080/19490976.2016.1273998 CrossRefPubMedGoogle Scholar
  79. 79.
    Hocquart M, Lagier JC, Cassir N, Saidani N, Eldin C, Kerbaj J, Delord M, Valles C, Brouqui P, Raoult D, Million M (2018) Early fecal microbiota transplantation improves survival in severe Clostridium difficile infections. Clin Infect Dis 66:645–650.  https://doi.org/10.1093/cid/cix762 CrossRefPubMedGoogle Scholar
  80. 80.
    Currie BP, Lemos-Filho L (2004) Evidence for biliary excretion of vancomycin into stool during intravenous therapy: potential implications for rectal colonization with vancomycin-resistant enterococci. Antimicrob Agents Chemother 48:4427–4429.  https://doi.org/10.1128/AAC.48.11.4427-4429.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
  82. 82.
    Apisarnthanarak A, Razavi B, Mundy LM (2002) Adjunctive intracolonic vancomycin for severe Clostridium difficile colitis: case series and review of the literature. Clin Infect Dis 35:690–696.  https://doi.org/10.1086/342334 CrossRefPubMedGoogle Scholar
  83. 83.
    Akamine CM, Ing MB, Jackson CS, Loo LK (2016) The efficacy of intracolonic vancomycin for severe Clostridium difficile colitis: a case series. BMC Infect Dis 16:316–323.  https://doi.org/10.1186/s12879-016-1657-1 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Neal MD, Alverdy JC, Hall DE, Simmons RL, Zuckerbraun BS (2011) Diverting loop ileostomy and colonic lavage: an alternative to total abdominal colectomy for the treatment of severe, complicated Clostridium difficile associated disease. Ann Surg 254:423–429.  https://doi.org/10.1097/SLA.0b013e31822ade48 CrossRefPubMedGoogle Scholar
  85. 85.
    Surawicz CM, McFarland LV, Greenberg RN, Rubin M, Fekety R, Mulligan ME, Garcia RJ, Brandmarker S, Bowen K, Borjal D, Elmer GW (2000) The search for a better treatment for recurrent clostridium difficile disease: use of high-dose vancomycin combined with Saccharomyces boulardii. Clin Infect Dis 31:1012–1017.  https://doi.org/10.1086/318130 CrossRefPubMedGoogle Scholar
  86. 86.
    Ofosu A (2016) Clostridium difficile infection: a review of current and emerging therapies. Ann Gastroenterol 29:147–154.  https://doi.org/10.20524/aog.2016.0006 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Sorg JA, Sonenshein AL (2010) Inhibiting the initiation of Clostridium difficile spore germination using analogs of chenodeoxycholic acid, a bile acid. J Bacteriol 192:4983–4990.  https://doi.org/10.1128/JB.00610-10 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Hopkins RJ, Wilson RB (2018) Treatment of recurrent Clostridium difficile colitis: a narrative review. Gastroenterol Rep 6:21–28.  https://doi.org/10.1093/gastro/gox041 CrossRefGoogle Scholar
  89. 89.
    Pepin J, Routhier S, Gagnon S, Brazeau I (2006) Management and outcomes of a first recurrence of Clostridium difficile-associated disease in Quebec, Canada. Clin Infect Dis 42:758–764.  https://doi.org/10.1086/501126 CrossRefPubMedGoogle Scholar
  90. 90.
    Kapoor K, Chandra M, Nag D, Paliwal JK, Gupta RC, Saxena RC (1999) Evaluation of metronidazole toxicity: a prospective study. Int J Clin Pharmacol Res 19:83–88 PubMedGoogle Scholar
  91. 91.
    McFarland LV, Elmer GW, Surawicz CM (2002) Breaking the cycle: treatment strategies for 163 cases of recurrent Clostridium difficile disease. Am J Gastroenterol 97:1769–1775.  https://doi.org/10.1111/j.1572-0241.2002.05839.x CrossRefPubMedGoogle Scholar
  92. 92.
    Sirbu BD, Soriano MM, Manzo C, Lum J, Gerding DN, Johnson S (2017) Vancomycin taper and pulse regimen with careful follow-up for patients with recurrent Clostridium difficile infection. Clin Infect Dis 65:1396–1399.  https://doi.org/10.1093/cid/cix529 CrossRefPubMedGoogle Scholar
  93. 93.
  94. 94.
    Cornely OA, Miller MA, Louie TJ, Crook DW, Gorbach SL (2012) Treatment of first recurrence of Clostridium difficile infection: fidaxomicin versus vancomycin. Clin Infect Dis 55:S154–S161.  https://doi.org/10.1093/cid/cis462 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Johnson S, Schriever C, Galang M, Kelly CP, Gerding DN (2007) Interruption of recurrent Clostridium difficile-associated diarrhea episodes by serial therapy with vancomycin and rifaximin. Clin Infect Dis 44:846–848.  https://doi.org/10.1086/511870 CrossRefPubMedGoogle Scholar
  96. 96.
    Johnson S, Schriever C, Patel U, Patel T, Hecht DW, Gerding DN (2009) Rifaximin redux: treatment of recurrent Clostridium difficile infections with rifaximin immediately post-vancomycin treatment. Anaerobe 15:290–291.  https://doi.org/10.1016/j.anaerobe.2009.08.004 CrossRefPubMedGoogle Scholar
  97. 97.
    Garey KW, Ghantoji SS, Shah DN, Habib M, Arora V, Jiang Z-D, DuPont HLA (2011) A randomized, double-blind, placebo-controlled pilot study to assess the ability of rifaximin to prevent recurrent diarrhoea in patients with Clostridium difficile infection. J Antimicrob Chemother 66:2850–2855.  https://doi.org/10.1093/jac/dkr377 CrossRefPubMedGoogle Scholar
  98. 98.
    Gill HS (2003) Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Pract Res Clin Gastroenterol 17:755–773.  https://doi.org/10.1016/S1521-6918(03)00074-X CrossRefPubMedGoogle Scholar
  99. 99.
    McFarland LV, Surawicz CM, Greenberg RN, Fekety R, Elmer GW, Moyer KA, Melcher SA, Bowen KE, Cox JL, Noorani Z (1994) A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. JAMA 271:1913–1918CrossRefGoogle Scholar
  100. 100.
    Pillai A, Nelson RL (2008) Probiotics for treatment of Clostridium difficile-associated colitis in adults. Cochrane Database Syst. Rev.  https://doi.org/10.1002/14651858.CD004611.pub2
  101. 101.
    Shen NT, Maw A, Tmanova LL, Pino A, Ancy K, Crawford CV, Simon MS, Evans AT (2017) Timely use of probiotics in hospitalized adults prevents Clostridium difficile infection: a systematic review with meta-regression analysis. Gastroenterology 152:1889–1900.  https://doi.org/10.1053/j.gastro.2017.02.003 CrossRefPubMedGoogle Scholar
  102. 102.
    Drekonja D, Reich J, Gezahegn S, Greer N, Shaukat A, MacDonald R, Rutks I, Wilt T (2015) Fecal microbiota transplantation for Clostridium difficile infection: a systematic review. Ann Intern Med 162:630–638.  https://doi.org/10.7326/M14-2693 CrossRefPubMedGoogle Scholar
  103. 103.
    van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JFWM, Tijssen JGP, Speelman P, Dijkgraaf MGW, Keller JJ (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–415.  https://doi.org/10.1056/NEJMoa1205037 CrossRefPubMedGoogle Scholar
  104. 104.
    Youngster I, Sauk J, Pindar C, Wilson RG, Kaplan JL, Smith MB, Alm EJ, Gevers D, Russell GH, Hohmann EL (2014) Fecal microbiota transplant for relapsing Clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clin Infect Dis 58:1515–1522.  https://doi.org/10.1093/cid/ciu135 CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    van Beurden YH, de Groot PF, van Nood E, Nieuwdorp M, Keller JJ, Goorhuis A (2017) Complications, effectiveness, and long term follow-up of fecal microbiota transfer by nasoduodenal tube for treatment of recurrent Clostridium difficile infection. United Eur Gastroenterol J 5:868–879.  https://doi.org/10.1177/2050640616678099 CrossRefGoogle Scholar
  106. 106.
  107. 107.
    http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInform ation/Guidances/Vaccines/UCM361393.pdf. (accessed 1 september 2018)
  108. 108.
    Bhutiani N, Schucht JE, Miller KR, McClave SA (2018) Technical aspects of fecal microbial transplantation (FMT). Curr Gastroenterol Rep 20:30–36.  https://doi.org/10.1007/s11894-018-0636-7 CrossRefPubMedGoogle Scholar
  109. 109.
    Hamilton MJ, Weingarden AR, Sadowsky MJ, Khoruts A (2012) Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. Am J Gastroenterol 107:761–767.  https://doi.org/10.1038/ajg.2011.482 CrossRefPubMedGoogle Scholar
  110. 110.
    Lagier J-C, Delord M, Million M, Parola P, Stein A, Brouqui P, Raoult D (2015) Dramatic reduction in Clostridium difficile ribotype 027-associated mortality with early fecal transplantation by the nasogastric route: a preliminary report. Eur J Clin Microbiol Infect Dis 34:1597–1601.  https://doi.org/10.1007/s10096-015-2394-x CrossRefPubMedGoogle Scholar
  111. 111.
    Goldenberg SD, Batra R, Beales I, Digby-Bell JL, Irving PM, Kellingray L, Narbad A, Franslem-Elumogo N (2018) Comparison of different strategies for providing fecal microbiota transplantation to treat patients with recurrent Clostridium difficile infection in two English hospitals: a review. Infect Dis Ther 7:71–86.  https://doi.org/10.1007/s40121-018-0189-y CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Youngster I, Mahabamunuge J, Systrom HK, Sauk J, Khalili H, Levin J, Kaplan JL, Hohmann EL (2016) Oral, frozen fecal microbiota transplant (FMT) capsules for recurrent Clostridium difficile infection. BMC Med 14:134–138.  https://doi.org/10.1186/s12916-016-0680-9 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Kao D, Roach B, Silva M, Beck P, Rioux K, Kaplan GG, Chang HJ, Coward S, Goodman KJ, Xu H, Madsen K, Mason A, Wong GKS, Jovel J, Patterson J, Louie T (2017) Effect of oral capsule- vs colonoscopy-delivered fecal microbiota transplantation on recurrent Clostridium difficile infection: a randomized clinical trial. JAMA 318:1985–1993.  https://doi.org/10.1001/jama.2017.17077 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Surawicz CM, Brandt LJ, Binion DG, Ananthakrishnan AN, Curry SR, Gilligan PH, McFarland LV, Mellow M, Zuckerbraun BS (2013) Guidelines for diagnosis, treatment and prevention of Clostridium difficile infections. Am J Gastroenterol 108:478–498.  https://doi.org/10.1038/ajg.2013.4 CrossRefPubMedGoogle Scholar
  115. 115.
    Kyne L, Warny M, Qamar A, Kelly CP (2000) Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin a. N Engl J Med 342:390–397.  https://doi.org/10.1056/NEJM200002103420604 CrossRefPubMedGoogle Scholar
  116. 116.
    Negm OH, MacKenzie B, Hamed MR, Ahmad OAJ, Shone CC, Humphreys DP, Ravi Acharya K, Loscher CE, Marszalowska I, Lynch M, Wilcox MH, Monaghan TM (2017) Protective antibodies against Clostridium difficile are present in intravenous immunoglobulin and are retained in humans following its administration: Anti- C difficile antibodies in IVIg. Clin Exp Immunol 188:437–443.  https://doi.org/10.1111/cei.12946 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Péchiné S, Janoir C, Collignon A (2017) Emerging monoclonal antibodies against Clostridium difficile infection. Expert Opin Biol Ther 17:415–427.  https://doi.org/10.1080/14712598.2017.1300655 CrossRefPubMedGoogle Scholar
  118. 118.
    Leav BA, Blair B, Leney M, Knauber M, Reilly C, Lowy I et al (2010) Serum anti-toxin B antibody correlates with protection from recurrent Clostridium difficile infection (CDI). Vaccine 28:965–969.  https://doi.org/10.1016/j.vaccine.2009.10.144 CrossRefPubMedGoogle Scholar
  119. 119.
    Lowy I, Molrine DC, Leav BA, Blair BM, Baxter R, Gerding DN, Kelly CP, Katchar K, Baxter R, Ambrosino D, Molrine D (2010) Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med 362:197–205.  https://doi.org/10.1056/NEJMoa0907635 CrossRefPubMedGoogle Scholar
  120. 120.
    Wilcox MH, Gerding DN, Poxton IR, Kelly C, Nathan R, Birch T, Cornely OA, Rahav G, Bouza E, Lee C, Jenkin G, Jensen W, Kim YS, Yoshida J, Gabryelski L, Pedley A, Eves K, Tipping R, Guris D, Kartsonis N, Dorr MB (2017) Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N Engl J Med 376:305–317.  https://doi.org/10.1056/NEJMoa1602615 CrossRefPubMedGoogle Scholar
  121. 121.
    Henderson M, Bragg A, Fahim G, Shah M, Hermes-DeSantis E (2017) A review of the safety and efficacy of vaccines as prophylaxis for Clostridium difficile infections. Vaccines 5:25–34.  https://doi.org/10.3390/vaccines5030025 CrossRefPubMedCentralGoogle Scholar
  122. 122.
    Kotloff KL, Wasserman SS, Losonsky GA, Thomas W, Nichols R, Edelman R, Bridwell M, Monath TP (2001) Safety and immunogenicity of increasing doses of a Clostridium difficile toxoid vaccine administered to healthy adults. Infect Immun 69:988–995.  https://doi.org/10.1128/IAI.69.2.988-995.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Bézay N, Ayad A, Dubischar K, Firbas C, Hochreiter R, Kiermayr S, Kiss I, Pinl F, Jilma B, Westritschnig K (2016) Safety, immunogenicity and dose response of VLA84, a new vaccine candidate against Clostridium difficile, in healthy volunteers. Vaccine 34:2585–2592.  https://doi.org/10.1016/j.vaccine.2016.03.098 CrossRefPubMedGoogle Scholar
  124. 124.
    Greenberg RN, Marbury TC, Foglia G, Warny M (2012) Phase I dose finding studies of an adjuvanted Clostridium difficile toxoid vaccine. Vaccine 30:2245–2249.  https://doi.org/10.1016/j.vaccine.2012.01.065 CrossRefPubMedGoogle Scholar
  125. 125.
    de Bruyn G, Saleh J, Workman D, Pollak R, Elinoff V, Fraser NJ, Lefebvre G, Martens M, Mills RE, Nathan R, Trevino M, van Cleeff M, Foglia G, Ozol-Godfrey A, Patel DM, Pietrobon PJ, Gesser R (2016) Defining the optimal formulation and schedule of a candidate toxoid vaccine against Clostridium difficile infection: a randomized phase 2 clinical trial. Vaccine 34:2170–2178.  https://doi.org/10.1016/j.vaccine.2016.03.028 CrossRefPubMedGoogle Scholar
  126. 126.
    Sheldon E, Kitchin N, Peng Y, Eiden J, Gruber W, Johnson E, Jansen KU, Pride MW, Pedneault L (2016) A phase 1, placebo-controlled, randomized study of the safety, tolerability, and immunogenicity of a Clostridium difficile vaccine administered with or without aluminum hydroxide in healthy adults. Vaccine 34:2082–2091.  https://doi.org/10.1016/j.vaccine.2016.03.010 CrossRefPubMedGoogle Scholar
  127. 127.
  128. 128.
  129. 129.
  130. 130.
    http://www.valneva.com/en/rd/vla84 (Accessed 18 Aug 2018)
  131. 131.
  132. 132.
  133. 133.
  134. 134.
    Péchiné S, Bruxelle JF, Janoir C, Collignon A (2018) Targeting Clostridium difficile surface components to develop immunotherapeutic strategies against Clostridium difficile infection. Front Microbiol 9:1–11.  https://doi.org/10.3389/fmicb.2018.01009 CrossRefGoogle Scholar
  135. 135.
    Daniels LM, Kufel WD (2018) Clinical review of Clostridium difficile infection: an update on treatment and prevention. Expert Opin Pharmacother 25:1–11.  https://doi.org/10.1080/14656566.2018.1524872 CrossRefGoogle Scholar
  136. 136.
  137. 137.
    Lee CH, Patino H, Stevens C, Rege S, Chesnel L, Louie T, Mullane KM (2016) Surotomycin versus vancomycin for Clostridium difficile infection: phase 2, randomized, controlled, double-blind, non-inferiority, multicentre trial. J Antimicrob Chemother 71:2964–2971.  https://doi.org/10.1093/jac/dkw246 CrossRefPubMedGoogle Scholar
  138. 138.
    Boix V, Fedorak RN, Mullane KM, Pesant Y, Stoutenburgh U, Jin M, Adedoyin A, Chesnel L, Guris D, Larson KB, Murata Y (2017) Primary outcomes from a phase 3, randomized, double-blind, active-controlled trial of surotomycin in subjects with Clostridium difficile infection. Open Forum Infect. Dis. 4:275–283.  https://doi.org/10.1093/ofid/ofw275 CrossRefGoogle Scholar
  139. 139.
    Daley P, Louie T, Lutz JE, Khanna S, Stoutenburgh U, Jin M, Adedoyin A, Chesnel L, Guris D, Larson KB, Murata Y (2017) Surotomycin versus vancomycin in adults with Clostridium difficile infection: primary clinical outcomes from the second pivotal, randomized, double-blind, phase 3 trial. J Antimicrob Chemother 72:3462–3470.  https://doi.org/10.1093/jac/dkx299 CrossRefPubMedGoogle Scholar
  140. 140.
    Endres BT, Bassères E, Alam MJ, Garey KW (2017) Cadazolid for the treatment of Clostridium difficile. Expert Opin Investig Drugs 26:509–514.  https://doi.org/10.1080/13543784.2017.1304538 CrossRefPubMedGoogle Scholar
  141. 141.
    Baldoni D, Gutierrez M, Timmer W, Dingemanse J (2014) Cadazolid, a novel antibiotic with potent activity against Clostridium difficile: safety, tolerability and pharmacokinetics in healthy subjects following single and multiple oral doses. J Antimicrob Chemother 69:706–714.  https://doi.org/10.1093/jac/dkt401 CrossRefPubMedGoogle Scholar
  142. 142.
    Gerding DN, Hecht DW, Louie T, Nord CE, Talbot GH, Cornely OA, Buitrago M, Best E, Sambol S, Osmolski JR, Kracker H, Locher HH, Charef P, Wilcox M (2016) Susceptibility of Clostridium difficile isolates from a phase 2 clinical trial of cadazolid and vancomycin in C. difficile infection. J Antimicrob Chemother 71:213–219.  https://doi.org/10.1093/jac/dkv300 CrossRefPubMedGoogle Scholar
  143. 143.
  144. 144.
    Goldstein EJC, Citron DM, Tyrrell KL, Merriam CV (2013) Comparative in vitro activities of SMT19969, a new antimicrobial agent, against Clostridium difficile and 350 gram-positive and gram-negative aerobic and anaerobic intestinal flora isolates. Antimicrob Agents Chemother 57:4872–4876.  https://doi.org/10.1128/AAC.01136-13 CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Vickers R, Robinson N, Best E, Echols R, Tillotson G, Wilcox M (2015) A randomised phase 1 study to investigate safety, pharmacokinetics and impact on gut microbiota following single and multiple oral doses in healthy male subjects of SMT19969, a novel agent for Clostridium difficile infections. BMC Infect Dis 15:91–101.  https://doi.org/10.1186/s12879-015-0759-5 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Vickers RJ, Tillotson GS, Nathan R, Hazan S, Pullman J, Lucasti C, Deck K, Yacyshyn B, Maliakkal B, Pesant Y, Tejura B, Roblin D, Gerding DN, Wilcox MH (2017) Efficacy and safety of ridinilazole compared with vancomycin for the treatment of Clostridium difficile infection: a phase 2, randomised, double-blind, active-controlled, non-inferiority study. Lancet Infect Dis 17:735–744.  https://doi.org/10.1016/S1473-3099(17)30235-9 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
  148. 148.
    Citron DM, Tyrrell KL, Merriam CV, Goldstein EJC (2012) Comparative in vitro activities of LFF571 against Clostridium difficile and 630 other intestinal strains of aerobic and anaerobic bacteria. Antimicrob Agents Chemother 56:2493–2503.  https://doi.org/10.1128/AAC.06305-11 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Trzasko A, Leeds JA, Praestgaard J, LaMarche MJ, McKenney D (2012) Efficacy of LFF571 in a hamster model of Clostridium difficile infection. Antimicrob Agents Chemother 56:4459–4462.  https://doi.org/10.1128/AAC.06355-11 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Mullane K, Lee C, Bressler A, Buitrago M, Weiss K, Dabovic K, Praestgaard J, Leeds JA, Blais J, Pertel P (2015) Multicenter, randomized clinical trial to compare the safety and efficacy of LFF571 and vancomycin for Clostridium difficile infections. Antimicrob Agents Chemother 59:1435–1440.  https://doi.org/10.1128/AAC.04251-14 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Farver DK, Hedge DD, Lee SC (2005) Ramoplanin: a lipoglycodepsipeptide antibiotic. Ann Pharmacother 39:863–868.  https://doi.org/10.1345/aph.1E397 CrossRefPubMedGoogle Scholar
  152. 152.
  153. 153.
    Fulco P, Wenzel RP (2006) Ramoplanin: a topical lipoglycodepsipeptide antibacterial agent. Expert Rev Anti-Infect Ther 4:939–945.  https://doi.org/10.1586/14787210.4.6.939 CrossRefPubMedGoogle Scholar
  154. 154.
    Critchley IA, Green LS, Young CL, Bullard JM, Evans RJ, Price M, Jarvis TC, Guiles JW, Janjic N, Ochsner UA (2009) Spectrum of activity and mode of action of REP3123, a new antibiotic to treat Clostridium difficile infections. J Antimicrob Chemother 63:954–963.  https://doi.org/10.1093/jac/dkp041 CrossRefPubMedGoogle Scholar
  155. 155.
    Nayak SU, Griffiss JM, Blumer J, O’Riordan MA, Gray W, McKenzie R, Jurao RA, An AT, Le M, Bell SJ, Ochsner UA, Jarvis TC, Janjic N, Zenilman JM (2017) Safety, tolerability, systemic exposure, and metabolism of CRS3123, a methionyl-tRNA synthetase inhibitor developed for treatment of Clostridium difficile, in a phase 1 study. Antimicrob Agents Chemother 61:e02760–e02772.  https://doi.org/10.1128/AAC.02760-16 CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Butler MM, Shinabarger DL, Citron DM, Kelly CP, Dvoskin S, Wright GE, Feng H, Tzipori S, Bowlin TL (2012) MBX-500, a hybrid antibiotic with in vitro and in vivo efficacy against toxigenic Clostridium difficile. Antimicrob Agents Chemother 56:4786–4792.  https://doi.org/10.1128/AAC.00508-12 CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Mathur T, Barman TK, Kumar M, Singh D, Kumar R, Khera MK, Yamada M, Inoue S, Upadhyay DJ, Masuda N (2018) In vitro and in vivo activities of DS-2969b, a novel GyrB inhibitor, against Clostridium difficile. Antimicrob Agents Chemother 62:e02157-02167.  https://doi.org/10.1128/AAC.02157-17 CrossRefGoogle Scholar
  158. 158.
    Vandell AG, Inoue S, Dennie J, Nagasawa Y, Gajee R, Pav J, Zhang G, Zamora C, Masuda N, Senaldi G (2018) Phase 1 study to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of multiple oral doses of DS-2969b, a novel GyrB inhibitor, in healthy subjects. Antimicrob Agents Chemother 62:e02537–e02565.  https://doi.org/10.1128/AAC.02537-17 CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Dennie J, Vandell AG, Inoue S, Gajee R, Pav J, Zhang G, Zamora C, Masuda N, Uchiyama M, Yamada M, Senaldi G. A phase i, single-ascending-dose study in healthy subjects to assess the safety, tolerability, pharmacokinetics, and pharmacodynamics of DS-2969b, a novel GyrB inhibitor. J Clin Pharmacol 58:1557-1565.  https://doi.org/10.1002/jcph.1151 CrossRefGoogle Scholar
  160. 160.
    Spigaglia P, Mastrantonio P, Barbanti F (2018) Antibiotic resistances of Clostridium difficile. Adv Exp Med Biol 1050:137–159.  https://doi.org/10.1007/978-3-319-72799-8_9 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Chimie Radicalaire ICR, UMR CNRS 7273, Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de PharmacieAix Marseille UniversitéMarseille Cedex 05France
  2. 2.Service Central de la Qualité et de l’information Pharmaceutiques (SCQIP), Hôpital de la ConceptionAssistance publique–Hôpitaux de Marseille (AP–HM)MarseilleFrance
  3. 3.Pharmacie Usage Intérieur, Hôpital NordAssistance publique–Hôpitaux de Marseille (AP–HM)Marseille Cedex 20France
  4. 4.Pharmacie Usage Intérieur, Hôpital de la ConceptionAssistance publique–Hôpitaux de Marseille (AP–HM)MarseilleFrance

Personalised recommendations