Advertisement

Evaluation of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for identifying Burkholderia pseudomallei and Burkholderia thailandensis isolates

  • Jin Li
  • Weiwei Hu
  • Fengling Zhang
  • Min Li
  • Chenglong Rao
  • Weiping Lu
Original Article
  • 99 Downloads

Abstract

Since Burkholderia thailandensis is included in the reference spectra of the VITEK MS libraries rather than Burkholderia pseudomallei, B. pseudomallei cannot be correctly identified in the current version of VITEK MS. This study was undertaken to evaluate the utility of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with the VITEK MS plus system in the detection of B. pseudomallei and B. thailandensis isolates. For each species, we increased the reference spectra, and then, a SuperSpectrum was created based on the selection of 39 specific masses. In a second step, we validated the SuperSpectra with 106 isolates identified by 16S rRNA gene sequencing. The results showed that there was 100% agreement between the validation strains analyzed by MALDI-TOF MS and those evaluated using 16S rRNA gene sequencing analysis methods. Therefore, MALDI-TOF MS is a promising, rapid, and economical method to monitor the outbreaks and spread of B. pseudomallei and B. thailandensis isolates.

Keywords

Burkholderia pseudomallei Burkholderia thailandensis Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 16S rRNA gene sequencing analysis SuperSpectra 

Supplementary material

10096_2018_3415_MOESM1_ESM.docx (520 kb)
ESM 1 (DOCX 519 kb)

References

  1. 1.
    Peto L, Nadjm B, Horby P et al (2014) The bacterial aetiology of adult community-acquired pneumonia in Asia: a systematic review. Trans R Soc Trop Med Hyg 108(6):326–337CrossRefGoogle Scholar
  2. 2.
    Kingsley PV, Leader M, Nagodawithana NS, Tipre M, Sathiakumar N (2016) Melioidosis in Malaysia: a review of case reports. PLoS Negl Trop Dis 10(12):e0005182CrossRefGoogle Scholar
  3. 3.
    Perumal SR, Stiles BG, Sethi G, LHK L (2017) Melioidosis: clinical impact and public health threat in the tropics. PLoS Negl Trop Dis 11(5):e0004738CrossRefGoogle Scholar
  4. 4.
    Suntornsut P, Wongsuwan N, Malasit M et al (2016) Barriers and recommended interventions to prevent melioidosis in Northeast Thailand: a focus group study using the behaviour change wheel. PLoS Negl Trop Dis 10(7):e0004823CrossRefGoogle Scholar
  5. 5.
    Yang S (2000) Melioidosis research in China. Acta Trop 77(2):157–165CrossRefGoogle Scholar
  6. 6.
    Currie BJ, Dance DA, Cheng AC (2008) The global distribution of Burkholderia pseudomallei and melioidosis: an update. Trans R Soc Trop Med Hyg 102(Suppl 1):S1–S4CrossRefGoogle Scholar
  7. 7.
    Ma G, Zheng D, Cai Q, Yuan Z (2010) Prevalence of Burkholderia pseudomallei in Guangxi, China. Epidemiol Infect 138(1):37–39CrossRefGoogle Scholar
  8. 8.
    Fang Y, Huang Y, Li Q et al (2012) First genome sequence of a Burkholderia pseudomallei isolate in China, strain BPC006, obtained from a melioidosis patient in Hainan. J Bacteriol 194(23):6604–6605CrossRefGoogle Scholar
  9. 9.
    Chen H, Xia L, Zhu X et al (2015) Burkholderia pseudomallei sequence type 562 in China and Australia. Emerg Infect Dis 21(1):166–168CrossRefGoogle Scholar
  10. 10.
    Wang XM, Zheng X, Wu H et al (2016) Multilocus sequence typing of clinical isolates of Burkholderia pseudomallei collected in Hainan, a Tropical Island of Southern China. Am J Trop Med Hyg 95(4):760–764CrossRefGoogle Scholar
  11. 11.
    Fang Y, Chen H, Hu Y et al (2016) Burkholderia pseudomallei-derived miR-3473 enhances NF-κB via targeting TRAF3 and is associated with different inflammatory responses compared to Burkholderia thailandensis in murine macrophages. BMC Microbiol 16(1):283CrossRefGoogle Scholar
  12. 12.
    Wang H, Chen YL, Teng SH, Xu ZP, Xu YC, Hsueh PR (2016) Evaluation of the bruker biotyper matrix-assisted laser desorption/ionization time-of-flight mass spectrometry system for identification of clinical and environmental isolates of Burkholderia pseudomallei. Front Microbiol 7:415Google Scholar
  13. 13.
    Jang HR, Lee CW, Ok SJ et al (2015) Melioidosis presenting as a mycotic aneurysm in a Korean patient, diagnosed by 16S rRNA sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Int J Infect Dis 38:62–64CrossRefGoogle Scholar
  14. 14.
    Weissert C, Dollenmaier G, Rafeiner P, Riehm J, Schultze D (2009) Burkholderia pseudomallei misidentified by automated system. Emerg Infect Dis 15(11):1799–1801CrossRefGoogle Scholar
  15. 15.
    Lowe P, Haswell H, Lewis K (2006) Use of various common isolation media to evaluate the new VITEK 2 colorimetric GN card for identification of Burkholderia pseudomallei. J Clin Microbiol 44(3):854–856CrossRefGoogle Scholar
  16. 16.
    Suttisunhakul V, Pumpuang A, Ekchariyawat P et al (2017) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of Burkholderia pseudomallei from Asia and Australia and differentiation between Burkholderia species. PLoS One 12(4):e0175294CrossRefGoogle Scholar
  17. 17.
    Lau SK, Sridhar S, Ho CC et al (2015) Laboratory diagnosis of melioidosis: past, present and future. Exp Biol Med (Maywood) 240(6):742–751CrossRefGoogle Scholar
  18. 18.
    Fang H, Ohlsson AK, Ullberg M, Ozenci V (2012) Evaluation of species-specific PCR, Bruker MS, VITEK MS and the VITEK 2 system for the identification of clinical enterococcus isolates. Eur J Clin Microbiol Infect Dis 31(11):3073–3077CrossRefGoogle Scholar
  19. 19.
    Lowe CW, Satterfield BA, Nelson DB et al (2016) A Quadruplex real-time PCR assay for the rapid detection and differentiation of the most relevant members of the B. pseudomallei complex: B. mallei, B. pseudomallei, and B. thailandensis. PLoS One 11(10):e0164006CrossRefGoogle Scholar
  20. 20.
    Wattal C, Oberoi JK, Goel N, Raveendran R, Khanna S (2017) Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) for rapid identification of micro-organisms in the routine clinical microbiology laboratory. Eur J Clin Microbiol Infect Dis 36(5):807–812CrossRefGoogle Scholar
  21. 21.
    Li X, Tang Y, Lu X (2018) Insight into identification of Acinetobacter species by matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) in the clinical laboratory. J Am Soc Mass Spectrom 29(7):1546–1553CrossRefGoogle Scholar
  22. 22.
    Chang K, Luo J, Xu H et al (2017) Human infection with Burkholderia thailandensis, China, 2013. Emerg Infect Dis 23(8):1416–1418CrossRefGoogle Scholar
  23. 23.
    Luo L, Liu W, Li B et al (2016) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of Mycobacterium abscessus subspecies according to whole-genome sequencing. J Clin Microbiol 54(12):2982–2989CrossRefGoogle Scholar
  24. 24.
    Buckwalter SP, Olson SL, Connelly BJ et al (2016) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of Mycobacterium species, Nocardia species, and other Aerobic Actinomycetes. J Clin Microbiol 54(2):376–384CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Laboratory Medicine, Institute of Surgery Research, Daping HospitalArmy Medical UniversityChongqingPeople’s Republic of China
  2. 2.Department of Respiratory and Critical Care MedicineThe first affiliated Hospital of Chongqing Medical UniversityChongqingPeople’s Republic of China
  3. 3.Department of Clinical Microbiology and Immunology, College of Medical Laboratory ScienceArmy Medical UniversityChongqingPeople’s Republic of China

Personalised recommendations