Evolution of haemostatic parameters and risk of bleeding during treatment with cefazolin

  • Alessio StrazzullaEmail author
  • Catherine Chakvetadze
  • Marie Picque
  • Bruno Cassard
  • Fabien Hernandez
  • Astrid De Pontfarcy
  • Clara Flateau
  • Pierre Danneels
  • Nabil Belfeki
  • Sylvain Diamantis
Original Article


In 2017, five cases of severe haemorrhages during treatment with cefazolin occurred in France. The aim of this study was to assess the risk of haemorrhage related to treatment with cefazolin by evaluating haemostatic parameters and bleeding events. A retrospective study was conducted from January 2016 to December 2017. Two populations were analysed: (i) overall population, which included all patients treated with cefazolin during this period and (ii) coagulation study population, which included all patients treated with cefazolin with available coagulation parameters (activated partial thromboplastin time (aPTT) and international normalised ratio (INR) at baseline and at the end of treatment or EoT). Values of either aPTT or INR at baseline and at EoT were compared. Cases of severe haemorrhages were reported and correlated with values of aPTT and INR. Overall, 132 patients received cefazolin and 59/132 (45%) were included in the coagulation study group. A significant increase of median aPTT was observed from baseline to EoT (39.5 and 44.3 sec; p = 0.004, respectively). Overall, severe haemorrhage occurred in 7/132 (5%) patients. Coagulation parameters were available in three of them, and no correlation was observed between bleeding events and aPTT increase. This study showed that bleeding is probably more frequent than ever reported before during cefazolin treatment. The significant increase of aPTT observed during cefazolin treatment was not correlated with risk of haemorrhage. Further studies are needed to explore the possible physio-pathological pathways behind the modification of haemostatic parameters and risk of haemorrhage.


Cefazolin Haemorrhage Activated partial thromboplastin time Coagulation Bleeding International normalised ratio 


Compliance with ethical standard

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study, formal consent is not required.

Informed consent

Because this study did not require neither further laboratory analysis nor different clinical acts than daily clinical routine, a written consent form was not proposed to any eligible patients.


  1. 1.
    Bassetti M, Righi E, Astilean A, Corcione S, Petrolo A, Farina EC, De Rosa FG (2015) Antimicrobial prophylaxis in minor and major surgery. Minerva Anestesiol 81:76–91Google Scholar
  2. 2.
    Davis JS, Turnidge J, Tong S (2018) A large retrospective cohort study of cefazolin compared with flucloxacillin for methicillin-susceptible Staphylococcus aureus bacteraemia. Int J Antimicrob Agents 52:297–300CrossRefGoogle Scholar
  3. 3.
    Loubet P, Burdet C, Vindrios W, Grall N, Wolff M, Yazdanpanah Y, Andremont A, Duval X, Lescure FX (2018) Cefazolin versus anti-staphylococcal penicillins for treatment of methicillin-susceptible Staphylococcus aureus bacteraemia: a narrative review. Clin Microbiol Infect 24:125–132CrossRefGoogle Scholar
  4. 4.
    McDanel JS, Roghmann MC, Perencevich EN, Ohl ME, Goto M, Livorsi DJ, Jones M, Albertson JP, Nair R, O'Shea AMJ, Schweizer ML (2017) comparative effectiveness of cefazolin versus nafcillin or oxacillin for treatment of methicillin-susceptible Staphylococcus aureus infections complicated by bacteremia: a nationwide cohort study. Clin Infect Dis 65:100–106CrossRefGoogle Scholar
  5. 5.
    Gay E, Barthel A, Rouzic N, Henriot B, Quélennec B, Lorleac'h A, Prades N, Schmitt F (2017) Cefazolin and coagulation disorders: a case report. Ann Biol Clin (Paris) 76:104–106Google Scholar
  6. 6.
    Angles E, Mouton C, Perino J, Remy A, Ouattara A (2017) Hypoprothrombinemia and severe perioperative hemorrhagic complications in cardiac surgery patients treated with high-dose cefazolin for infective endocarditis. Anaesth Crit Care Pain Med.
  7. 7.
    Barnes T, Yan S, Kaakeh Y (2014) Necrotizing esophagitis and bleeding associated with cefazolin. Ann Pharmacother 48:1214–1218CrossRefGoogle Scholar
  8. 8.
    Schleich A, Gerber L, Wüthrich RP (2011) Segerer S: Peri-renal hematoma after intraperitoneal cefazolin treatment for peritonitis. Perit Dial Int 31:505–507CrossRefGoogle Scholar
  9. 9.
    Kuypers DR, Claes K (2002) Intracerebral haemorrhage caused by cefazolin-induced hypoprothrombinaemia in a renal transplant recipient. Nephrol Dial Transplant 17:532–533CrossRefGoogle Scholar
  10. 10.
    Chung AH, Watson K (2008) Cefazolin-induced hypoprothrombinemia. Am J Health Syst Pharm 65:823–826CrossRefGoogle Scholar
  11. 11.
    Kurz RW, Wallner M, Graninger W, Tragl RH (1986) Hypoprothrombinaemia and bleeding associated with cefazolin. J Antimicrob Chemother 18:772–773CrossRefGoogle Scholar
  12. 12.
    Lerner PI, Lubin A (1974) Letter: coagulopathy with cefazolin in uremia. N Engl J Med 290:1324Google Scholar
  13. 13.
    Clark J, Hochman R, Rolla AR, Thomas S, Miller DG, Kaldany A, D'Elia JA (1983) Coagulopathy associated with the use of cephalosporin or moxalactam antibiotics in acute and chronic renal failure. Clin Exp Dial Apheresis 7:177–190CrossRefGoogle Scholar
  14. 14.
    Wood TC, Johnson KL, Naylor S, Weinshilboum RM (2002) Cefazolin administration and 2-methyl-1,3,4-thiadiazole-5-thiol in human tissue: possible relationship to hypoprothrombinemia. Drug Metab Dispos 30:1123–1128CrossRefGoogle Scholar
  15. 15.
    http://servvidal:8012/showProduct.html?productId=3348 (last accessed on Thursday, 18 Oct 2018)Google Scholar
  16. 16.
  17. 17. (last accessed on Friday, 16 Mar, 2018)
  18. 18.
    Wilkens B, Sullivan P, McDonald TP, Krahwinkel DJ (1995) Effects of cephalothin, cefazolin, and cefmetazole on the haemostatic mechanism in normal dogs: implications for the surgical patient. Vet Surg 24:25–31CrossRefGoogle Scholar
  19. 19.
    Hasegawa H, Ohkochi A, Chiba J, Hirai Y, Fukuda E, Iwamura K, Fujii S, Takeo H, Ogata T, Tatsumi K (1988) Study on the effectiveness and safety of cefmenoxime in the treatment of respiratory tract infections. Tendency toward clinical haemorrhage related to the treatment. Jpn J Antibiot 41:1285–1294CrossRefGoogle Scholar
  20. 20.
    Agnelli G, Guerciolini R, Boldrini F, Tonzani A, Della Torre P, Nenci GG, Del Favero A (1988) Effects of cefamandole on hemostasis in patients undergoing hip replacement with heparin prophylaxis. Chem Aust 7:396–399Google Scholar
  21. 21.
    Kikuchi S, Ando A, Minato K (1991) Acquired coagulopathy caused by administration of parenteral broad-spectrum antibiotics. Rinsho Byori 39:83–90Google Scholar
  22. 22.
    Ero MP, Harvey NR, Harbert JL, Janc JW, Chin KH, Barriere SL (2014) Impact of telavancin on prothrombin time and activated partial thromboplastin time as determined using point-of-care coagulometers. J Thromb Thrombolysis 38:235–240CrossRefGoogle Scholar
  23. 23.
    Li J, Echevarria KL, Hughes DW, Codena JA, Bowling JE, Lewis JS 2nd (2014) Comparison of cefazolin versus oxacillin for treatment of complicated bacteremia caused by methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother 58:5117–5124CrossRefGoogle Scholar
  24. 24.
    vanWinzum C (1978) Clinical safety and tolerance of cefoxitin sodium: an overview. J Antimicrob Chemother 4:91–104CrossRefGoogle Scholar
  25. 25.
    Shah MD, Wardlow LC, Stevenson KB, Coe KE, Reed EE (2018) Clinical outcomes with penicillin versus alternative β-lactams in the treatment of penicillin-susceptible Staphylococcus aureus bacteremia. Pharmacotherapy.
  26. 26.
    Rao SN, Rhodes NJ, Lee BJ, Scheetz MH, Hanson AP, Segreti J, Crank CW, Wang SK (2015) Treatment outcomes with cefazolin versus oxacillin for deep-seated methicillin-susceptible Staphylococcus aureus bloodstream infections. Antimicrob Agents Chemother 59:5232–5238CrossRefGoogle Scholar
  27. 27.
    Monogue ML, Ortwine JK, Wei W, Eljaaly K, Bhavan KP (2018) Nafcillin versus cefazolin for the treatment of methicillin-susceptible Staphylococcus aureus bacteremia. J Infect Public HealthGoogle Scholar
  28. 28.
    Eljaaly K, Alshehri S, Erstad BL (2018) Systematic review and meta-analysis of the safety of antistaphylococcal penicillins compared to cefazolin. Antimicrob Agents Chemother 62Google Scholar
  29. 29.
    Shi C, Xiao Y, Zhang Q, Li Q, Wang F, Wu J, Lin N (2018) Efficacy and safety of cefazolin versus antistaphylococcal penicillins for the treatment of methicillin-susceptible Staphylococcus aureus bacteremia: a systematic review and meta-analysis. BMC Infect Dis 18:508CrossRefGoogle Scholar
  30. 30.
    Burdet C, Loubet P, Le Moing V, Vindrios W, Esposito-Farèse M, Linard M, Ferry T, Massias L, Tattevin P, Wolff M, Vandenesch F, Grall N, Quintin C, Mentré F, Duval X, Lescure FX (2018) CloCeBa study group: Efficacy of cloxacillin versus cefazolin for methicillin-susceptible Staphylococcus aureus bacteraemia (CloCeBa): study protocol for a randomised, controlled, non-inferiority trial. BMJ Open 8:e023151CrossRefGoogle Scholar
  31. 31.
    Lee BJ, Rao SN, Wang SK, Lee JY, Lakada IY, Gilbert EM, Barr VO, Postelnick MJ, Sutton SH, Zembower TR, Bolon M, Scheetz MH, Rhodes NJ (2017) Implementation of a cefazolin-based stewardship pathway for methicillin-susceptible Staphylococcus aureus bloodstream infections paired with infectious diseases consultation. Int J Antimicrob Agents 49:650–654CrossRefGoogle Scholar
  32. 32.
    Youngster I, Shenoy ES, Hooper DC, Nelson SB (2014) Comparative evaluation of the tolerability of cefazolin and nafcillin for treatment of methicillin-susceptible Staphylococcus aureus infections in the outpatient setting. Clin Infect Dis 59:369–375CrossRefGoogle Scholar
  33. 33.
    Flynt LK, Kenney RM, Zervos MJ, Davis SL (2017) The safety and economic impact of cefazolin versus nafcillin for the treatment of methicillin-susceptible Staphylococcus aureus bloodstream infections. Infect Dis Ther 6:225–231CrossRefGoogle Scholar
  34. 34.
    Chen LJ, Hsiao FY, Shen LJ, Wu FL, Tsay W, Hung CC, Lin SW (2016) Use of hypoprothrombinemia-inducing cephalosporins and the risk of hemorrhagic events: a Nationwide Nested Case-Control Study. PLoS One 11:e0158407CrossRefGoogle Scholar
  35. 35.
    Fourrier F (2003) Coagulation inhibitors in severe sepsis: state of the art. Rev Med Interne 24:295–304CrossRefGoogle Scholar
  36. 36.
    Graveleau J, Trossaërt M, Leux C, Masseau A, Ternisien C, Néel A, Fouassier M, Agard C, Sigaud M, Hamidou M (2013) Acquired hemophilia A. A monocentric retrospective study of 39 patients. Rev Med Interne 34:4–11CrossRefGoogle Scholar
  37. 37.
    Lee G, Duan-Porter W, Metjian AD (2012) Acquired, non-amyloid related factor X deficiency: review of the literature. Haemophilia 18:655–663CrossRefGoogle Scholar
  38. 38.
    Bossi P, Cabane J, Ninet J, Dhote R, Hanslik T, Chosidow O, Jouan-Flahault C, Horellou MH, Leynadier F, Liozon E, Pouchot J, Robin JP, Sanderson F, Schaeffer A, Sicard D, Staikowsky F, Wechsler B, Zittoun R (1998) Acquired hemophilia due to factor VIII inhibitors in 34 patients. Am J Med 105:400–408CrossRefGoogle Scholar
  39. 39.
    Belley A, Robson R, Francis JL, Adcock DM, Tiefenbacher S, Rubino CM, Moeck G, Sylvester D, Dudley MN, Loutit J (2017) Effects of oritavancin on coagulation tests in the clinical laboratory. Antimicrob Agents Chemother 61Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alessio Strazzulla
    • 1
    Email author return OK on get
  • Catherine Chakvetadze
    • 1
  • Marie Picque
    • 2
  • Bruno Cassard
    • 3
  • Fabien Hernandez
    • 3
  • Astrid De Pontfarcy
    • 1
  • Clara Flateau
    • 1
  • Pierre Danneels
    • 1
  • Nabil Belfeki
    • 1
  • Sylvain Diamantis
    • 1
  1. 1.Infectious Diseases UnitCentre Hospitalier Sud Ile de FranceMelunFrance
  2. 2.Medical Biology LaboratoryCentre Hospitalier Sud Ile de FranceMelunFrance
  3. 3.Pharmacy, “Marc Jaquet”Centre Hospitalier Sud Ile de FranceMelunFrance

Personalised recommendations