Advertisement

The downside of antimicrobial agents for wound healing

  • Apirujee Punjataewakupt
  • Supamas Napavichayanun
  • Pornanong Aramwit
Review
  • 109 Downloads

Abstract

The use of topical antimicrobials is beneficial for infection control in wound care because wound infection is the major cause of delayed healing. The advantages of topical over systemic antimicrobials include a higher concentration at the target site, fewer systemic adverse effects, and a lower incidence of antimicrobial resistance. Nowadays, topical antimicrobials are divided into three groups: disinfectants, antiseptics, and antibiotics. Only antiseptics and antibiotics can be applied to living skin; therefore, this review will focus only on these groups. The advantages of each topical antimicrobial are well established; however, their disadvantages remain prominent. It is widely known that antiseptics show higher cytotoxicity and a broader spectrum of activity than antibiotics, whereas antibiotics show a higher probability of bacterial resistance development. However, there are still many adverse effects, resulting from each topical antimicrobial. This review aims to summarize the possible adverse effects of commonly used antiseptics (biguanide, silver, iodine, chlorine compounds, and other antiseptics), antibiotics (bacitracin, mafenide, mupirocin, neomycin, and silver sulfadiazine), and natural antimicrobials (curcumin and honey). Moreover, the antimicrobials that should be avoided in particular populations are also summarized in this review in order to increase awareness for antimicrobial selection in those populations.

Keywords

Topical antimicrobials Wounds Adverse effect Toxicity 

Notes

Funding

This work was supported by the Thailand Research Fund through the Research and Researcher for Industry Programme (RRi) (Grant No. PHD58I0006) to Apirujee Punjataewakupt and Pornanong Aramwit, Thailand.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Guest JF, Ayoub N, McIlwraith T, Uchegbu I, Gerrish A, Weidlich D, Vowden K, Vowden P (2015) Health economic burden that wounds impose on the National Health Service in the UK. BMJ Open 5(12):e009283.  https://doi.org/10.1136/bmjopen-2015-009283 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen 17(6):763–771.  https://doi.org/10.1111/j.1524-475X.2009.00547.x CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gottrup F, Apelqvist J, Bjarnsholt T, Cooper R, Moore Z, Peters EJ, Probst S (2013) EWMA document: antimicrobials and non-healing wounds. Evidence, controversies and suggestions. J Wound Care 22(5 Suppl):S1–S89.  https://doi.org/10.12968/jowc.2013.22.Sup5.S1 CrossRefPubMedGoogle Scholar
  4. 4.
    Vermeulen H, Westerbos SJ, Ubbink DT (2010) Benefit and harm of iodine in wound care: a systematic review. J Hosp Infect 76(3):191–199.  https://doi.org/10.1016/j.jhin.2010.04.026 CrossRefPubMedGoogle Scholar
  5. 5.
    Lipsky BA, Hoey C (2009) Topical antimicrobial therapy for treating chronic wounds. Clin Infect Dis 49(10):1541–1549.  https://doi.org/10.1086/644732 CrossRefPubMedGoogle Scholar
  6. 6.
    Thomas GW, Rael LT, Bar-Or R, Shimonkevitz R, Mains CW, Slone DS, Craun ML, Bar-Or D (2009) Mechanisms of delayed wound healing by commonly used antiseptics. J Trauma 66(1):82–90; discussion 90-81.  https://doi.org/10.1097/TA.0b013e31818b146d CrossRefPubMedGoogle Scholar
  7. 7.
    Lio PA, Kaye ET (2009) Topical antibacterial agents. Infect Dis Clin N Am 23(4):945–963.  https://doi.org/10.1016/j.idc.2009.06.006 CrossRefGoogle Scholar
  8. 8.
    Atiyeh BS, Dibo SA, Hayek SN (2009) Wound cleansing, topical antiseptics and wound healing. Int Wound J 6(6):420–430.  https://doi.org/10.1111/j.1742-481X.2009.00639.x CrossRefPubMedGoogle Scholar
  9. 9.
    Dumville JC, Lipsky BA, Hoey C, Cruciani M, Fiscon M, Xia J (2017) Topical antimicrobial agents for treating foot ulcers in people with diabetes. Cochrane Database Syst Rev 6:Cd011038.  https://doi.org/10.1002/14651858.CD011038.pub2 CrossRefPubMedGoogle Scholar
  10. 10.
    Chlorhexidine (2016) In: Aronson JK (ed) Meyler’s side effects of drugs, Sixteenth edn. Elsevier, Oxford, pp 239–248.  https://doi.org/10.1016/B978-0-444-53717-1.00474-1 CrossRefGoogle Scholar
  11. 11.
    Karpinski TM, Szkaradkiewicz AK (2015) Chlorhexidine--pharmaco-biological activity and application. Eur Rev Med Pharmacol Sci 19(7):1321–1326PubMedGoogle Scholar
  12. 12.
    Giannelli M, Chellini F, Margheri M, Tonelli P, Tani A (2008) Effect of chlorhexidine digluconate on different cell types: a molecular and ultrastructural investigation. Toxicol in Vitro 22(2):308–317.  https://doi.org/10.1016/j.tiv.2007.09.012 CrossRefPubMedGoogle Scholar
  13. 13.
    Hidalgo E, Dominguez C (2001) Mechanisms underlying chlorhexidine-induced cytotoxicity. Toxicol in Vitro 15(4–5):271–276CrossRefGoogle Scholar
  14. 14.
    Faria G, Cardoso CR, Larson RE, Silva JS, Rossi MA (2009) Chlorhexidine-induced apoptosis or necrosis in L929 fibroblasts: a role for endoplasmic reticulum stress. Toxicol Appl Pharmacol 234(2):256–265.  https://doi.org/10.1016/j.taap.2008.10.012 CrossRefPubMedGoogle Scholar
  15. 15.
    Li YC, Kuan YH, Lee SS, Huang FM, Chang YC (2014) Cytotoxicity and genotoxicity of chlorhexidine on macrophages in vitro. Environ Toxicol 29(4):452–458.  https://doi.org/10.1002/tox.21771 CrossRefPubMedGoogle Scholar
  16. 16.
    Voros P, Dobrindt O, Perka C, Windisch C, Matziolis G, Rohner E (2014) Human osteoblast damage after antiseptic treatment. Int Orthop 38(1):177–182.  https://doi.org/10.1007/s00264-013-2107-y CrossRefPubMedGoogle Scholar
  17. 17.
    Best AJ, Nixon MF, Taylor GJS (2007) Brief exposure of 0.05% chlorhexidine does not impair non-osteoarthritic human cartilage metabolism. J Hosp Infect 67(1):67–71.  https://doi.org/10.1016/j.jhin.2007.05.014 CrossRefPubMedGoogle Scholar
  18. 18.
    Krautheim AB, Jermann TH, Bircher AJ (2004) Chlorhexidine anaphylaxis: case report and review of the literature. Contact Dermat 50(3):113–116.  https://doi.org/10.1111/j.0105-1873.2004.00308.x CrossRefGoogle Scholar
  19. 19.
    Karpanen TJ, Worthington T, Conway BR, Hilton AC, Elliott TSJ, Lambert PA (2008) Penetration of chlorhexidine into human skin. Antimicrob Agents Chemother 52(10):3633–3636.  https://doi.org/10.1128/AAC.00637-08 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Case DE, McAinsh J, Rushton A, Winrow MJ (1976) Chlorhexidine: attempts to detect percutaneous absorption in man. In: Williams JD, Geddes AM (eds) Special problems in chemotherapy. Springer US, Boston, pp 367–374.  https://doi.org/10.1007/978-1-4684-3120-9_57 CrossRefGoogle Scholar
  21. 21.
    Nonami K, Saitoh S, Nishimura-Danjobara Y, Ishida S, Oyama Y (2016) Chlorhexidine possesses unique cytotoxic actions in rat thymic lymphocytes: its relation with electrochemical property of membranes. Environ Toxicol Pharmacol 48:17–21.  https://doi.org/10.1016/j.etap.2016.09.024 CrossRefPubMedGoogle Scholar
  22. 22.
    Creppy EE, Diallo A, Moukha S, Eklu-Gadegbeku C, Cros D (2014) Study of epigenetic properties of Poly(HexaMethylene Biguanide) hydrochloride (PHMB). Int J Environ Res Public Health 11(8):8069–8092.  https://doi.org/10.3390/ijerph110808069 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Röhner E, Hoff P, Winkler T, von Roth P, Seeger JB, Perka C, Matziolis G (2011) Polyhexanide and hydrogen peroxide inhibit proteoglycan synthesis of human chondrocytes. J Histotechnol 34(1):35–39.  https://doi.org/10.1179/014788811X12949268296121 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Muller G, Kramer A (2008) Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J Antimicrob Chemother 61(6):1281–1287.  https://doi.org/10.1093/jac/dkn125 CrossRefPubMedGoogle Scholar
  25. 25.
    Kramer A, Roth B, Muller G, Rudolph P, Klocker N (2004) Influence of the antiseptic agents polyhexanide and octenidine on FL cells and on healing of experimental superficial aseptic wounds in piglets. A double-blind, randomised, stratified, controlled, parallel-group study. Skin Pharmacol Physiol 17(3):141–146.  https://doi.org/10.1159/000077241 CrossRefPubMedGoogle Scholar
  26. 26.
    Röhner E, Seeger JB, Hoff P, Dahn-Wollenberg S, Perka C, Matziolis G (2011) Toxicity of polyhexanide and hydrogen peroxide on human chondrocytes in vitro. Orthopedics 34(7):e290–e294.  https://doi.org/10.3928/01477447-20110526-02 CrossRefPubMedGoogle Scholar
  27. 27.
    Ince A, Schutze N, Hendrich C, Jakob F, Eulert J, Lohr JF (2007) Effect of polyhexanide and gentamycin on human osteoblasts and endothelial cells. Swiss Med Wkly 137(9–10):139–145 https://doi.org/2007/09/smw-11434 PubMedGoogle Scholar
  28. 28.
    Yabes JM, White BK, Murray CK, Sanchez CJ, Mende K, Beckius ML, Zera WC, Wenke JC, Akers KS (2016) In vitro activity of manuka honey and polyhexamethylene biguanide on filamentous fungi and toxicity to human cell lines. Med Mycol.  https://doi.org/10.1093/mmy/myw070
  29. 29.
    Hubner NO, Kramer A (2010) Review on the efficacy, safety and clinical applications of polihexanide, a modern wound antiseptic. Skin Pharmacol Physiol 23(Suppl):17–27.  https://doi.org/10.1159/000318264 CrossRefPubMedGoogle Scholar
  30. 30.
    Röhner E, Kolar P, Seeger JB, Arnholdt J, Thiele K, Perka C, Matziolis G (2011) Toxicity of antiseptics against chondrocytes: what is best for the cartilage in septic joint surgery? Int Orthop 35(11):1719–1723.  https://doi.org/10.1007/s00264-010-1178-2 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Polyhexanide (2016) In: Aronson JK (ed) Meyler’s side effects of drugs, Sixteenth edn. Elsevier, Oxford, p 859.  https://doi.org/10.1016/B978-0-444-53717-1.01315-9 CrossRefGoogle Scholar
  32. 32.
    Kautz O, Schumann H, Degerbeck F, Venemalm L, Jakob T (2010) Severe anaphylaxis to the antiseptic polyhexanide. Allergy 65(8):1068–1070.  https://doi.org/10.1111/j.1398-9995.2009.02299.x CrossRefPubMedGoogle Scholar
  33. 33.
    Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26(2):117–130CrossRefGoogle Scholar
  34. 34.
    Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: review of the literature. Burns 33(2):139–148.  https://doi.org/10.1016/j.burns.2006.06.010 CrossRefPubMedGoogle Scholar
  35. 35.
    Hidalgo E, Dominguez C (1998) Study of cytotoxicity mechanisms of silver nitrate in human dermal fibroblasts. Toxicol Lett 98(3):169–179CrossRefGoogle Scholar
  36. 36.
    Poon VK, Burd A (2004) In vitro cytotoxity of silver: implication for clinical wound care. Burns 30(2):140–147.  https://doi.org/10.1016/j.burns.2003.09.030 CrossRefPubMedGoogle Scholar
  37. 37.
    Fuller FW (2009) The side effects of silver sulfadiazine. J Burn Care Res 30(3):464–470.  https://doi.org/10.1097/BCR.0b013e3181a28c9b CrossRefPubMedGoogle Scholar
  38. 38.
    Lansdown AB (2010) A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv Pharmacol Sci 2010:910686.  https://doi.org/10.1155/2010/910686 CrossRefGoogle Scholar
  39. 39.
    Sterling JP (2014) Silver-resistance, allergy, and blue skin: truth or urban legend? Burns 40. Supplement 1:S19–S23.  https://doi.org/10.1016/j.burns.2014.10.007 CrossRefGoogle Scholar
  40. 40.
    Chou T-D, Gibran NS, Urdahl K, Lin EY, Heimbach DM, Engrav LH (1999) Methemoglobinemia secondary to topical silver nitrate therapy-a case report. Burns 25(6):549–552.  https://doi.org/10.1016/S0305-4179(99)00031-5 CrossRefPubMedGoogle Scholar
  41. 41.
    McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22(1):116–127.  https://doi.org/10.1016/j.jfda.2014.01.010 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Riaz Ahmed KB, Nagy AM, Brown RP, Zhang Q, Malghan SG, Goering PL (2017) Silver nanoparticles: significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol in Vitro 38:179–192.  https://doi.org/10.1016/j.tiv.2016.10.012 CrossRefPubMedGoogle Scholar
  43. 43.
    AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290.  https://doi.org/10.1021/nn800596w CrossRefPubMedGoogle Scholar
  44. 44.
    Szmyd R, Goralczyk AG, Skalniak L, Cierniak A, Lipert B, Filon FL, Crosera M, Borowczyk J, Laczna E, Drukala J, Klein A, Jura J (2013) Effect of silver nanoparticles on human primary keratinocytes. Biol Chem 394(1):113–123.  https://doi.org/10.1515/hsz-2012-0202 CrossRefPubMedGoogle Scholar
  45. 45.
    Burd A, Kwok CH, Hung SC, Chan HS, Gu H, Lam WK, Huang L (2007) A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound Repair Regen 15(1):94–104.  https://doi.org/10.1111/j.1524-475X.2006.00190.x CrossRefPubMedGoogle Scholar
  46. 46.
    Larese FF, D’Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G (2009) Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255(1):33–37.  https://doi.org/10.1016/j.tox.2008.09.025 CrossRefPubMedGoogle Scholar
  47. 47.
    Brandt O, Mildner M, Egger AE, Groessl M, Rix U, Posch M, Keppler BK, Strupp C, Mueller B, Stingl G (2012) Nanoscalic silver possesses broad-spectrum antimicrobial activities and exhibits fewer toxicological side effects than silver sulfadiazine. Nanomedicine 8(4):478–488.  https://doi.org/10.1016/j.nano.2011.07.005 CrossRefPubMedGoogle Scholar
  48. 48.
    Vlachou E, Chipp E, Shale E, Wilson YT, Papini R, Moiemen NS (2007) The safety of nanocrystalline silver dressings on burns: a study of systemic silver absorption. Burns 33(8):979–985.  https://doi.org/10.1016/j.burns.2007.07.014 CrossRefPubMedGoogle Scholar
  49. 49.
    Trop M, Novak M, Rodl S, Hellbom B, Kroell W, Goessler W (2006) Silver-coated dressing acticoat caused raised liver enzymes and argyria-like symptoms in burn patient. J Trauma 60(3):648–652.  https://doi.org/10.1097/01.ta.0000208126.22089.b6 CrossRefPubMedGoogle Scholar
  50. 50.
    Zamora JL (1986) Chemical and microbiologic characteristics and toxicity of povidone-iodine solutions. Am J Surg 151(3):400–406.  https://doi.org/10.1016/0002-9610(86)90477-0 CrossRefPubMedGoogle Scholar
  51. 51.
    Kramer SA (1999) Effect of povidone-iodine on wound healing: a review. J Vasc Nurs 17(1):17–23CrossRefGoogle Scholar
  52. 52.
    Balin AK, Pratt L (2002) Dilute povidone-iodine solutions inhibit human skin fibroblast growth. Dermatol Surg 28(3):210–214PubMedGoogle Scholar
  53. 53.
    Sato S, Miyake M, Hazama A, Omori K (2014) Povidone-iodine-induced cell death in cultured human epithelial HeLa cells and rat oral mucosal tissue. Drug Chem Toxicol 37(3):268–275.  https://doi.org/10.3109/01480545.2013.846364 CrossRefPubMedGoogle Scholar
  54. 54.
    Polyvidone (povidone) iodine (2016) In: Aronson JK (ed) Meyler’s side effects of drugs (Sixteenth Edition). Elsevier, Oxford, pp 875–882.  https://doi.org/10.1016/B978-0-444-53717-1.01320-2
  55. 55.
    Leung AM, Braverman LE (2014) Consequences of excess iodine. Nat Rev Endocrinol 10(3):136–142.  https://doi.org/10.1038/nrendo.2013.251 CrossRefPubMedGoogle Scholar
  56. 56.
    Burgi H (2010) Iodine excess. Best Pract Res Clin Endocrinol Metab 24(1):107–115.  https://doi.org/10.1016/j.beem.2009.08.010 CrossRefPubMedGoogle Scholar
  57. 57.
    Perrin T, Hemett OM, Menth M, Descombes E (2012) Contrast-induced acute kidney injury following iodine opacification other than by intravascular injection. Clin Kidney J 5(5):456–458.  https://doi.org/10.1093/ckj/sfs102 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Cooper RA (2007) Iodine revisited. Int Wound J 4(2):124–137.  https://doi.org/10.1111/j.1742-481X.2007.00314.x CrossRefPubMedGoogle Scholar
  59. 59.
    Noda Y, Fujii K, Fujii S (2009) Critical evaluation of cadexomer-iodine ointment and povidone-iodine sugar ointment. Int J Pharm 372(1–2):85–90.  https://doi.org/10.1016/j.ijpharm.2009.01.007 CrossRefPubMedGoogle Scholar
  60. 60.
    Zhou LH, Nahm WK, Badiavas E, Yufit T, Falanga V (2002) Slow release iodine preparation and wound healing: in vitro effects consistent with lack of in vivo toxicity in human chronic wounds. Br J Dermatol 146(3):365–374CrossRefGoogle Scholar
  61. 61.
    Laudanska H, Gustavson B (1988) In-patient treatment of chronic varicose venous ulcers. A randomized trial of cadexomer iodine versus standard dressings. J Int Med Res 16(6):428–435CrossRefGoogle Scholar
  62. 62.
    Ohtani T, Mizuashi M, Ito Y, Aiba S (2007) Cadexomer as well as cadexomer iodine induces the production of proinflammatory cytokines and vascular endothelial growth factor by human macrophages. Exp Dermatol 16(4):318–323.  https://doi.org/10.1111/j.1600-0625.2006.00532.x CrossRefPubMedGoogle Scholar
  63. 63.
    Skog E, Arnesjo B, Troeng T, Gjores JE, Bergljung L, Gundersen J, Hallbook T, Hessman Y, Hillstrom L, Mansson T, Eilard U, Ekloff B, Plate G, Norgren L (1983) A randomized trial comparing cadexomer iodine and standard treatment in the out-patient management of chronic venous ulcers. Br J Dermatol 109(1):77–83CrossRefGoogle Scholar
  64. 64.
    Bianchi J (2001) Cadexomer-iodine in the treatment of venous leg ulcers: what is the evidence? J Wound Care 10(6):225–229.  https://doi.org/10.12968/jowc.2001.10.6.26085 CrossRefPubMedGoogle Scholar
  65. 65.
    Holloway GA Jr, Johansen KH, Barnes RW, Pierce GE (1989) Multicenter trial of cadexomer iodine to treat venous stasis ulcer. West J Med 151(1):35–38PubMedPubMedCentralGoogle Scholar
  66. 66.
    Murdoch R, Lagan KM (2013) The role of povidone and cadexomer iodine in the management of acute and chronic wounds. Phys Ther Rev 18(3):207–216.  https://doi.org/10.1179/1743288X13Y.0000000082 CrossRefGoogle Scholar
  67. 67.
    Dakin HD (1915) On the use of certain antiseptic substances in the treatment of infected wounds. Br Med J 2(2852):318–320CrossRefGoogle Scholar
  68. 68.
    Ponzano GP (2007) Sodium hypochlorite: history, properties, electrochemical production. Contrib Nephrol 154:7–23.  https://doi.org/10.1159/000096810 Google Scholar
  69. 69.
    Cardile AP, Sanchez CJ Jr, Hardy SK, Romano DR, Hurtgen BJ, Wenke JC, Murray CK, Akers KS (2014) Dakin solution alters macrophage viability and function. J Surg Res 192(2):692–699.  https://doi.org/10.1016/j.jss.2014.07.019 CrossRefPubMedGoogle Scholar
  70. 70.
    Hidalgo E, Bartolome R, Dominguez C (2002) Cytotoxicity mechanisms of sodium hypochlorite in cultured human dermal fibroblasts and its bactericidal effectiveness. Chem Biol Interact 139(3):265–282.  https://doi.org/10.1016/S0009-2797(02)00003-0 CrossRefPubMedGoogle Scholar
  71. 71.
    Peck B, Workeneh B, Kadikoy H, Patel SJ, Abdellatif A (2011) Spectrum of sodium hypochlorite toxicity in man—also a concern for nephrologists. NDT Plus 4(4):231–235.  https://doi.org/10.1093/ndtplus/sfr053 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kozol RA, Gillies C, Elgebaly SA (1988) Effects of sodium hypochlorite (Dakin’s solution) on cells of the wound module. Arch Surg 123(4):420–423CrossRefGoogle Scholar
  73. 73.
    Heggers JP, Sazy JA, Stenberg BD, Strock LL, McCauley RL, Herndon DN, Robson MC (1991) Bactericidal and wound-healing properties of sodium hypochlorite solutions: the 1991 Lindberg Award. J Burn Care Rehabil 12(5):420–424CrossRefGoogle Scholar
  74. 74.
    Bruch MK (2007) Toxicity and safety of topical sodium hypochlorite. Contrib Nephrol 154:24–38.  https://doi.org/10.1159/000096812 CrossRefPubMedGoogle Scholar
  75. 75.
    Sood A, Granick MS, Tomaselli NL (2014) Wound dressings and comparative effectiveness data. Adv Wound Care 3(8):511–529.  https://doi.org/10.1089/wound.2012.0401 CrossRefGoogle Scholar
  76. 76.
    Loo AEK, Halliwell B (2012) Effects of hydrogen peroxide in a keratinocyte-fibroblast co-culture model of wound healing. Biochem Biophys Res Commun 423(2):253–258.  https://doi.org/10.1016/j.bbrc.2012.05.100 CrossRefPubMedGoogle Scholar
  77. 77.
    Watt BE, Proudfoot AT, Vale JA (2004) Hydrogen peroxide poisoning. Toxicol Rev 23(1):51–57CrossRefGoogle Scholar
  78. 78.
    Bryan N, Ahswin H, Smart N, Bayon Y, Wohlert S, Hunt JA (2012) Reactive oxygen species (ROS)--a family of fate deciding molecules pivotal in constructive inflammation and wound healing. Eur Cell Mater 24:249–265CrossRefGoogle Scholar
  79. 79.
    Loo AEK, Wong YT, Ho R, Wasser M, Du T, Ng WT, Halliwell B (2012) Effects of hydrogen peroxide on wound healing in mice in relation to oxidative damage. PLoS One 7(11):e49215.  https://doi.org/10.1371/journal.pone.0049215 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Hoffmann ME, Meneghini R (1979) Action of hydrogen peroxide on human fibroblast in culture. Photochem Photobiol 30(1):151–155.  https://doi.org/10.1111/j.1751-1097.1979.tb07128.x CrossRefPubMedGoogle Scholar
  81. 81.
    Vessey DA, Lee K-H, Blacker KL (1992) Characterization of the oxidative stress initiated in cultured human keratinocytes by treatment with peroxides. J Invest Dermatol 99(6):859–863.  https://doi.org/10.1111/1523-1747.ep12614831 CrossRefPubMedGoogle Scholar
  82. 82.
    Hydrogen peroxide (2010) In: Greim H (ed) The MAK-collection for occupational health and safety: MAK Value Documentations, vol 26. Wiley, Weinheim, pp 192–214.  https://doi.org/10.1002/3527600418.mb772284e0026
  83. 83.
    Howard B (2007) Bacitracin. In: Enna SJ, Bylund DB (eds) xPharm: the comprehensive pharmacology reference. Elsevier, New York, pp 1–4.  https://doi.org/10.1016/B978-008055232-3.61280-2 Google Scholar
  84. 84.
    Held JL, Kalb RE, Ruszkowski AM, DeLeo V (1987) Allergic contact dermatitis from bacitracin. J Am Acad Dermatol 17(4):592–594.  https://doi.org/10.1016/S0190-9622(87)70241-2 CrossRefPubMedGoogle Scholar
  85. 85.
    Katz BE, Fisher AA (1987) Bacitracin: a unique topical antibiotic sensitizer. J Am Acad Dermatol 17(6):1016–1024.  https://doi.org/10.1016/S0190-9622(87)70292-8 CrossRefPubMedGoogle Scholar
  86. 86.
    Jacob SE, James WD (2004) From road rash to top allergen in a flash: bacitracin. Dermatol Surg 30(4 Pt 1):521–524.  https://doi.org/10.1111/j.1524-4725.2004.30168.x CrossRefPubMedGoogle Scholar
  87. 87.
    Schechter JF, Wilkinson RD, Carpio J (1984) Anaphylaxis following the use of bacitracin ointment: report of a case and review of the literature. Arch Dermatol 120(7):909–911.  https://doi.org/10.1001/archderm.1984.01650430095017 CrossRefPubMedGoogle Scholar
  88. 88.
    Cronin H, Mowad C (2009) Anaphylactic reaction to bacitracin ointment. Cutis 83(3):127–129PubMedGoogle Scholar
  89. 89.
    Bacitracin (2016) In: Aronson JK (ed) Meyler’s side effects of drugs (Sixteenth Edition). Elsevier, Oxford, pp 807–808.  https://doi.org/10.1016/B978-0-444-53717-1.00347-4
  90. 90.
    Shorr RI (2007) In: Hoth AB, Rawls N (eds) Drugs for the geriatric patient. W.B. Saunders, Philadelphia, pp 115–172.  https://doi.org/10.1016/B978-141600208-6.50006-1 CrossRefGoogle Scholar
  91. 91.
    Dash AK, Saha S (1996) Mafenide Acetate. In: Brittain HG (ed) Analytical Profiles of Drug Substances and Excipients, vol 24. Academic Press, San Diego, pp 277–305.  https://doi.org/10.1016/S0099-5428(08)60696-6 Google Scholar
  92. 92.
    Scholar E (2007) Mafenide. In: Enna SJ, Bylund DB (eds) xPharm: the comprehensive pharmacology reference. Elsevier, New York, pp 1–4.  https://doi.org/10.1016/B978-008055232-3.62088-4 Google Scholar
  93. 93.
    Zhang X-J, Heggers JP, Chinkes DL, Wolf SE, Hawkins HK, Wolfe RR (2006) Topical sulfamylon cream inhibits DNA and protein synthesis in the skin donor site wound. Surgery 139(5):633–639.  https://doi.org/10.1016/j.surg.2005.10.013 CrossRefPubMedGoogle Scholar
  94. 94.
    Cambiaso-Daniel J, Gallagher JJ, Norbury WB, Finnerty CC, Herndon DN, Culnan DM (2018) 11 - Treatment of Infection in Burn Patients. In: Herndon DN (ed) Total burn care (fifth edition). Elsevier, Edinburgh, pp 93–113.e114.  https://doi.org/10.1016/B978-0-323-47661-4.00011-3 Google Scholar
  95. 95.
    Marsicano AR Jr, Hutton JJ, Bryant WM (1973) Fatal hemolysis from mafenide treatment of burns in a patient with glucose-6-phosphate dehydrogenase deficiency. Case report. Plast Reconstr Surg 52(2):197–199CrossRefGoogle Scholar
  96. 96.
    Mafenide acetate cream: a review (1971) Drugs 1(6):434–460.  https://doi.org/10.2165/00003495-197101060-00002
  97. 97.
    Mafenide (2016) In: Aronson JK (ed) Meyler’s side effects of drugs (Sixteenth Edition). Elsevier, Oxford, p 728.  https://doi.org/10.1016/B978-0-444-53717-1.01011-8
  98. 98.
    Harrison HN, Shuck JM, Caldwell E (1975) Studies of the pain produced by mafenide acetate preparations in burns. Arch Surg 110(12):1446–1449.  https://doi.org/10.1001/archsurg.1975.01360180016003 CrossRefPubMedGoogle Scholar
  99. 99.
    Lamb YJ (1991) Overview of the role of mupirocin. J Hosp Infect 19:27–30.  https://doi.org/10.1016/0195-6701(91)90199-I CrossRefPubMedGoogle Scholar
  100. 100.
    van Bambeke F, Mingeot-Leclercq M-P, Glupczynski Y, Tulkens PM (2017) 137 - mechanisms of action. In: Cohen J, Powderly WG, Opal SM (eds) Infectious diseases (fourth edition). Elsevier, pp 1162-1180.e1161.  https://doi.org/10.1016/B978-0-7020-6285-8.00137-4 Google Scholar
  101. 101.
    Fraise AP (2010) CHAPTER 23 - mupirocin. In: Finch RG, Greenwood D, Norrby SR, Whitley RJ (eds) Antibiotic and chemotherapy, Ninth edn. Saunders, London, pp 290–291.  https://doi.org/10.1016/B978-0-7020-4064-1.00023-3 CrossRefGoogle Scholar
  102. 102.
    Balin AK, Leong I, Carter DM (1987) Effect of mupirocin on the growth and lifespan of human fibroblasts. J Invest Dermatol 88(6):736–740.  https://doi.org/10.1111/1523-1747.ep12470407 CrossRefPubMedGoogle Scholar
  103. 103.
    Gisby J, Bryant J (2000) Efficacy of a new cream formulation of mupirocin: comparison with oral and topical agents in experimental skin infections. Antimicrob Agents Chemother 44(2):255–260CrossRefGoogle Scholar
  104. 104.
    Bork K, Brauers J, Kresken M (1989) Efficacy and safety of 2% mupirocin ointment in the treatment of primary and secondary skin infections--an open multicentre trial. Br J Clin Pract 43(8):284–288PubMedGoogle Scholar
  105. 105.
    Mupirocin (2016) In: Aronson JK (ed) Meyler’s side effects of drugs (Sixteenth Edition). Elsevier, Oxford, p 1138.  https://doi.org/10.1016/B978-0-444-53717-1.01113-6
  106. 106.
    Herold DA, Rodeheaver GT, Bellamy WT, Fitton LA, Bruns DE, Edlich RF (1982) Toxicity of topical polyethylene glycol. Toxicol Appl Pharmacol 65(2):329–335.  https://doi.org/10.1016/0041-008X(82)90016-3 CrossRefPubMedGoogle Scholar
  107. 107.
    Mueller RS (2008) Chapter 24 - topical dermatological therapy. In: Maddison JE, Page SW, Church DB (eds) Small animal clinical pharmacology (second edn). Saunders, Edinburgh, pp 546–556.  https://doi.org/10.1016/B978-070202858-8.50026-9 CrossRefGoogle Scholar
  108. 108.
    Lovering AM, Reeves DS (2011) CHAPTER 12 - Aminoglycosides and aminocyclitols. In: Finch RG, Greenwood D, Norrby SR, Whitley RJ (eds) Antibiotic and chemotherapy (ninth edition). Saunders, London, pp 145–169.  https://doi.org/10.1016/B978-0-7020-4064-1.00012-9 CrossRefGoogle Scholar
  109. 109.
    Pádua CAMD, Schnuch A, Lessmann H, Geier J, Pfahlberg A, Uter W (2005) Contact allergy to neomycin sulfate: results of a multifactorial analysis. Pharmacoepidemiol Drug Saf 14(10):725–733.  https://doi.org/10.1002/pds.1117 CrossRefGoogle Scholar
  110. 110.
    Masur H, Whelton PK, Whelton A (1976) Neomycin toxicity revisited. Arch Surg 111(7):822–825CrossRefGoogle Scholar
  111. 111.
    Huth ME, Ricci AJ, Cheng AG (2011) Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int J Otolaryngol 2011:937861.  https://doi.org/10.1155/2011/937861 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Ansari IA, Onyema E (2008) Severe generalised hypersensitivity reaction to topical neomycin after cataract surgery: a case report. J Med Case Rep 2:57–57.  https://doi.org/10.1186/1752-1947-2-57 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Goh CL (1986) Anaphylaxis from topical neomycin and bacitracin. Australas J Dermatol 27(3):125–126CrossRefGoogle Scholar
  114. 114.
    Rosen J, Landriscina A, Kutner A, Adler BL, Krausz AE, Nosanchuk JD, Friedman AJ (2015) Silver sulfadiazine retards wound healing in mice via alterations in cytokine expression. J Invest Dermatol 135(5):1459–1462.  https://doi.org/10.1038/jid.2015.21 CrossRefPubMedGoogle Scholar
  115. 115.
    McCauley RL, Li Y-Y, Poole B, Evans MJ, Robson MC, Heggers JP, Herndon DN (1992) Differential inhibition of human basal keratinocyte growth to silver sulfadiazine and mafenide acetate. J Surg Res 52(3):276–285.  https://doi.org/10.1016/0022-4804(92)90086-F CrossRefPubMedGoogle Scholar
  116. 116.
    Lee A-RC, Moon HK (2003) Effect of topically applied silver sulfadiazine on fibroblast cell proliferation and biomechanical properties of the wound. Arch Pharm Res 26(10):855–860.  https://doi.org/10.1007/bf02980032 CrossRefPubMedGoogle Scholar
  117. 117.
    Chung DH, Colon NC, Herndon DN (2012) Chapter 26 - Burns. In: Coran AG (ed) Pediatric surgery (Seventh edn). Mosby, Philadelphia, pp 369–384.  https://doi.org/10.1016/B978-0-323-07255-7.00026-X CrossRefGoogle Scholar
  118. 118.
    Rowland Payne CE, Bladin C, Colchester AF, Bland J, Lapworth R, Lane D (1992) Argyria from excessive use of topical silver sulphadiazine. Lancet 340(8811):126.  https://doi.org/10.1016/0140-6736(92)90458-F CrossRefGoogle Scholar
  119. 119.
    Ungureanu M (2014) Concepts in local treatment of extensive paediatric burns. J Med Life 7(2):183–191PubMedPubMedCentralGoogle Scholar
  120. 120.
    Wang X-W, Wang NZ, Zhang OZ, Zapata-Sirvent RL, Davies JWL (1985) Tissue deposition of silver following topical use of silver sulphadiazine in extensive burns. Burns 11(3):197–201.  https://doi.org/10.1016/0305-4179(85)90070-1 CrossRefGoogle Scholar
  121. 121.
    Chaby G, Viseux V, Poulain JF, De Cagny B, Denoeux JP, Lok C (2005) Topical silver sulfadiazine-induced acute renal failure. Ann Dermatol Venereol 132(11 Pt 1):891–893CrossRefGoogle Scholar
  122. 122.
    Maitre S, Jaber K, Perrot JL, Guy C, Cambazard F (2002) Increased serum and urinary levels of silver during treatment with topical silver sulfadiazine. Ann Dermatol Venereol 129(2):217–219PubMedGoogle Scholar
  123. 123.
    Wan AT, Conyers RA, Coombs CJ, Masterton JP (1991) Determination of silver in blood, urine, and tissues of volunteers and burn patients. Clin Chem 37(10 Pt 1):1683–1687PubMedGoogle Scholar
  124. 124.
    Eldad A, Neuman A, Weinberg A, Benmeir P, Rotem M, Wexler MR (1991) Silver sulphadiazine-induced haemolytic anaemia in a glucose-6-phosphate dehydrogenase-deficient burn patient. Burns 17(5):430–432CrossRefGoogle Scholar
  125. 125.
    Bardal SK, Waechter JE, Martin DS (2011) Chapter 18 - Infectious diseases. In: Dimock K, Hyde M, Cicalese B (eds) Applied pharmacology. Saunders, Philadelphia, pp 233–291.  https://doi.org/10.1016/B978-1-4377-0310-8.00018-X
  126. 126.
    Gupta SC, Kunnumakkara AB, Aggarwal BB (2017) Chapter 12 - Curcumin, the holistic Avant-Garde. In: Patwardhan B, Chaguturu R (eds) Innovative approaches in drug discovery. Academic Press, Boston, pp 343–349.  https://doi.org/10.1016/B978-0-12-801814-9.00012-X CrossRefGoogle Scholar
  127. 127.
    Krausz AE, Adler BL, Cabral V, Navati M, Doerner J, Charafeddine RA, Chandra D, Liang H, Gunther L, Clendaniel A, Harper S, Friedman JM, Nosanchuk JD, Friedman AJ (2015) Curcumin-encapsulated nanoparticles as innovative antimicrobial and wound healing agent. Nanomedicine 11(1):195–206.  https://doi.org/10.1016/j.nano.2014.09.004 CrossRefPubMedGoogle Scholar
  128. 128.
    Mohanty C, Sahoo SK (2017) Curcumin and its topical formulations for wound healing applications. Drug Discov Today 22(10):1582–1592. https://doi.org/10.1016/j.drudis.2017.07.001 CrossRefGoogle Scholar
  129. 129.
    Siviero A, Gallo E, Maggini V, Gori L, Mugelli A, Firenzuoli F, Vannacci A (2015) Curcumin, a golden spice with a low bioavailability. J Herb Med 5(2):57–70.  https://doi.org/10.1016/j.hermed.2015.03.001 CrossRefGoogle Scholar
  130. 130.
    Rachmawati H, Edityaningrum CA, Mauludin R (2013) Molecular inclusion complex of curcumin–β-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel. AAPS PharmSciTech 14(4):1303–1312.  https://doi.org/10.1208/s12249-013-0023-5 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S (2008) Rapid reactive oxygen species (ROS) generation induced by curcumin leads to caspase-dependent and -independent apoptosis in L929 cells. Free Radic Biol Med 45(10):1403–1412.  https://doi.org/10.1016/j.freeradbiomed.2008.08.014 CrossRefPubMedGoogle Scholar
  132. 132.
    Kloesch B, Becker T, Dietersdorfer E, Kiener H, Steiner G (2013) Anti-inflammatory and apoptotic effects of the polyphenol curcumin on human fibroblast-like synoviocytes. Int Immunopharmacol 15(2):400–405.  https://doi.org/10.1016/j.intimp.2013.01.003 CrossRefPubMedGoogle Scholar
  133. 133.
    Chakravarti N, Kadara H, Yoon DJ, Shay JW, Myers JN, Lotan D, Sonenberg N, Lotan R (2010) Differential inhibition of protein translation machinery by curcumin in normal, immortalized, and malignant oral epithelial cells. Cancer Prev Res (Phila) 3(3):331–338.  https://doi.org/10.1158/1940-6207.capr-09-0076 CrossRefGoogle Scholar
  134. 134.
    Choudhuri T, Pal S, Das T, Sa G (2005) Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem 280(20):20059–20068.  https://doi.org/10.1074/jbc.M410670200 CrossRefPubMedGoogle Scholar
  135. 135.
    Irish J, Blair S, Carter DA (2011) The antibacterial activity of honey derived from Australian flora. PLoS One 6(3):e18229.  https://doi.org/10.1371/journal.pone.0018229 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    El Sohaimy SA, Masry SHD, Shehata MG (2015) Physicochemical characteristics of honey from different origins. Ann Agric Sci 60(2):279–287.  https://doi.org/10.1016/j.aoas.2015.10.015 CrossRefGoogle Scholar
  137. 137.
    Majtan J, Klaudiny J, Bohova J, Kohutova L, Dzurova M, Sediva M, Bartosova M, Majtan V (2012) Methylglyoxal-induced modifications of significant honeybee proteinous components in manuka honey: possible therapeutic implications. Fitoterapia 83(4):671–677.  https://doi.org/10.1016/j.fitote.2012.02.002 CrossRefPubMedGoogle Scholar
  138. 138.
    Jull A, Walker N, Parag V, Molan P, Rodgers A (2008) Randomized clinical trial of honey-impregnated dressings for venous leg ulcers. Br J Surg 95(2):175–182.  https://doi.org/10.1002/bjs.6059 CrossRefPubMedGoogle Scholar
  139. 139.
    Simon A, Traynor K, Santos K, Blaser G, Bode U, Molan P (2009) Medical honey for wound care—still the ‘latest resort?’. Evid Based Complement Alternat Med 6(2):165–173.  https://doi.org/10.1093/ecam/nem175 CrossRefPubMedGoogle Scholar
  140. 140.
    Oryan A, Alemzadeh E, Moshiri A (2016) Biological properties and therapeutic activities of honey in wound healing: a narrative review and meta-analysis. J Tissue Viability 25(2):98–118.  https://doi.org/10.1016/j.jtv.2015.12.002 CrossRefPubMedGoogle Scholar
  141. 141.
    Grigoryan K (2016) Chapter 12 - Safety of honey. In: Prakash V, Martín-Belloso O, Keener L et al. (eds) Regulating safety of traditional and ethnic foods. Academic Press, San Diego, pp 217–246.  https://doi.org/10.1016/B978-0-12-800605-4.00012-8 CrossRefGoogle Scholar
  142. 142.
    Lansdown AB (2006) Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol 33:17–34.  https://doi.org/10.1159/000093928 CrossRefPubMedGoogle Scholar
  143. 143.
    Rai MK, Deshmukh SD, Ingle AP, Gade AK (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112(5):841–852.  https://doi.org/10.1111/j.1365-2672.2012.05253.x CrossRefPubMedGoogle Scholar
  144. 144.
    Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83.  https://doi.org/10.1016/j.biotechadv.2008.09.002 CrossRefPubMedGoogle Scholar
  145. 145.
    Durani P, Leaper D (2008) Povidone-iodine: use in hand disinfection, skin preparation and antiseptic irrigation. Int Wound J 5(3):376–387.  https://doi.org/10.1111/j.1742-481X.2007.00405.x CrossRefPubMedGoogle Scholar
  146. 146.
    Djordjević VB (2004) Free radicals in cell biology. In: Jeon KW (ed) Int Rev Cytol, vol 237. Academic Press, Amsterdam, pp 57–89.  https://doi.org/10.1016/S0074-7696(04)37002-6 Google Scholar
  147. 147.
    McDonnell G (2009) The use of hydrogen peroxide for disinfection and sterilization applications. In: Marek I (ed) PATAI’S chemistry of functional groups. Wiley, New York.  https://doi.org/10.1002/9780470682531.pat0885
  148. 148.
    Greenwood D (2010) CHAPTER 31 - Miscellaneous antibacterial agents. In: Finch RG, Greenwood D, Norrby SR, Whitley RJ (eds) Antibiotic and chemotherapy (Ninth edn). Saunders, London, pp 356–365.  https://doi.org/10.1016/B978-0-7020-4064-1.00031-2 CrossRefGoogle Scholar
  149. 149.
    Lee VJ (2007) 7.22 - Anti-gram positive agents of natural product origins. In: Taylor JB, Triggle DJ (eds) Comprehensive medicinal chemistry II. Elsevier, Oxford, pp 653–671.  https://doi.org/10.1016/B0-08-045044-X/00222-4 CrossRefGoogle Scholar
  150. 150.
    Kester M, Karpa KD, Vrana KE (2012) 4 - Treatment of infectious diseases. In: Hyde M, Hall A (eds) Elsevier’s integrated review pharmacology (second edn). W.B. Saunders, Philadelphia, pp 41–78.  https://doi.org/10.1016/B978-0-323-07445-2.00004-5 CrossRefGoogle Scholar
  151. 151.
    Heyneman A, Hoeksema H, Vandekerckhove D, Pirayesh A, Monstrey S (2016) The role of silver sulphadiazine in the conservative treatment of partial thickness burn wounds: a systematic review. Burns 42(7):1377–1386.  https://doi.org/10.1016/j.burns.2016.03.029 CrossRefPubMedGoogle Scholar
  152. 152.
    Carr HS, Wlodkowski TJ, Rosenkranz HS (1973) Silver sulfadiazine: in vitro antibacterial activity. Antimicrob Agents Chemother 4(5):585–587CrossRefGoogle Scholar
  153. 153.
    Rai D, Singh JK, Roy N, Panda D (2008) Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochem J 410(1):147–155.  https://doi.org/10.1042/bj20070891 CrossRefPubMedGoogle Scholar
  154. 154.
    Yun DG, Lee DG (2016) Antibacterial activity of curcumin via apoptosis-like response in Escherichia coli. Appl Microbiol Biotechnol 100(12):5505–5514.  https://doi.org/10.1007/s00253-016-7415-x CrossRefPubMedGoogle Scholar
  155. 155.
    Tyagi P, Singh M, Kumari H, Kumari A, Mukhopadhyay K (2015) Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS One 10(3):e0121313.  https://doi.org/10.1371/journal.pone.0121313 CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K (2014) A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int 2014:186864.  https://doi.org/10.1155/2014/186864 CrossRefPubMedGoogle Scholar
  157. 157.
    Mandal MD, Mandal S (2011) Honey: its medicinal property and antibacterial activity. Asian Pac J Trop Biomed 1(2):154–160.  https://doi.org/10.1016/S2221-1691(11)60016-6 CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Wound dressings (2016) In: Aronson JK (ed) Meyler’s side effects of drugs (Sixteenth edn). Elsevier, Oxford, pp 525–526.  https://doi.org/10.1016/B978-0-444-53717-1.01644-9
  159. 159.
    Tamma PD, Aucott SW, Milstone AM (2010) Chlorhexidine use in the neonatal intensive care unit: results from a national survey. Infect Control Hosp Epidemiol 31(8):846–849.  https://doi.org/10.1086/655017 CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Chapman AK, Aucott SW, Gilmore MM, Advani S, Clarke W, Milstone AM (2013) Absorption and tolerability of aqueous chlorhexidine gluconate used for skin antisepsis prior to catheter insertion in preterm neonates. J Perinatol 33(10):768–771.  https://doi.org/10.1038/jp.2013.61 CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Shah AR, Liao LF (2017) Pediatric burn care: Unique Considerations in Management. Clin Plast Surg 44(3):603–610.  https://doi.org/10.1016/j.cps.2017.02.017 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Apirujee Punjataewakupt
    • 1
  • Supamas Napavichayanun
    • 1
  • Pornanong Aramwit
    • 1
  1. 1.Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand

Personalised recommendations