Advertisement

Laboratory automation reduces time to report of positive blood cultures and improves management of patients with bloodstream infection

  • Giuseppe Vittorio De Socio
  • Francesco Di Donato
  • Riccardo Paggi
  • Chiara Gabrielli
  • Alessandra Belati
  • Giuseppe Rizza
  • Martina Savoia
  • Antonella Repetto
  • Elio Cenci
  • Antonella Mencacci
Original Article

Abstract

The impact on time to results (TTR) and clinical decisions was evaluated for mono-microbial positive blood cultures (BC) processed using the BD Kiestra Work Cell Automation (WCA) system. Positive BC were processed by the WCA system by full-automatic subculture on solid media and digital imaging after 8 h of incubation (8-h method) followed by identification (ID) and antimicrobial susceptibility testing (AST). To evaluate the accuracy of the 8-h method, ID and AST from 8-h and overnight incubated colonies were compared for the same organisms. To evaluate its clinical impact, results from 102 BC processed by the 8-h method (cases) were compared with those from 100 BC processed by overnight incubation method (controls) in a comparable period. Identification after 8-h and overnight incubation gave concordant results in 101/102 (99.0%) isolates. Among a total of 1379 microorganism-antimicrobial combinations, categorical agreement was 99.4% (1371/1379); no very major error, 7 major errors, and one minor error were observed. TTR in cases (32.8 h ± 8.3 h) was significantly (p < 0.001) shorter than in controls (55.4 h ± 13.3 h). A significant reduction was observed for duration of empirical therapy (cases 54.8 h ± 23.3 h vs controls 86.9 h ± 34.1 h, p < 0.001) and 30-day crude mortality rate (cases 16.7% vs controls 29.0%, p < 0.037). Automation and 8-h digital reading of plates from positive BC, followed by ID and AST, greatly reduce TTR and shorten the duration of antimicrobial empiric therapy, possibly improving outcome in patients with mono-microbial bloodstream infections.

Keywords

Laboratory automation Blood culture Time to report BD Kiestra Bloodstream infections 

Abbreviations

BC

blood culture

TTR

time to report

ID

identification

AST

antimicrobial susceptibility testing

OR

odds ratios

CI

confidence intervals

Notes

Acknowledgments

The authors thank Dr. Amedeo Moretti and Dr. Enrico Ciurnella for technical assistance in antimicrobial susceptibility testing.

Funding

None.

References

  1. 1.
    Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for Sepsis and septic shock (Sepsis-3). JAMA 315(8):801–810CrossRefGoogle Scholar
  2. 2.
    Mitchell M, Levy MM, Evans LE, Rhodes A (2018) The surviving Sepsis campaign bundle: 2018 update. Crit Care Med 46(6):997–1000CrossRefGoogle Scholar
  3. 3.
    Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH (2000) The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcome in the ICU setting. Chest 118(1):146–155CrossRefGoogle Scholar
  4. 4.
    Kumar A, Roberts D, Wood KE et al (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34(6):1589–1596CrossRefGoogle Scholar
  5. 5.
    Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE et al (2009) Initial inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 136(5):1237–1248CrossRefGoogle Scholar
  6. 6.
    Opota O, Croxatto A, Prod'hom G, Greub G (2015) Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect 21(4):313–322CrossRefGoogle Scholar
  7. 7.
    Sinha M, Jupe J, Mack H, Coleman TP, Lawrence SM, Fraley SI (2018) Emerging Technologies for Molecular Diagnosis of Sepsis. Clin Microbiol Rev 31:e00089–e00017.  https://doi.org/10.1128/CMR.00089-17 CrossRefPubMedGoogle Scholar
  8. 8.
    Peker N, Couto N, Sinha B, Rossen JW (2018) Diagnosis of bloodstream infections from positive blood cultures and directly from blood samples: recent developments in molecular approaches. Clin Microbiol Infect.  https://doi.org/10.1016/J.CMI.2018.05.007 CrossRefGoogle Scholar
  9. 9.
    Descours G, Desmurs L, Hoang TLT, Ibranosyan M, Baume M, Ranc AG, Fuhrmann C, Dauwalder O, Salka W, Vandenesch F (2018) Evaluation of the accelerate Pheno™ system for rapid identification and antimicrobial susceptibility testing of gram-negative bacteria in bloodstream infections. Eur J Clin Microbiol Infect Dis.  https://doi.org/10.1007/s10096-018-3287-6 CrossRefGoogle Scholar
  10. 10.
    Idelevich EA, Schüle I, Grünastel B, Wüllenweber J, Peters G, Becker K (2014) Rapid identification of microorganisms from positive blood cultures by MALDI TOF mass spectrometry subsequent to very short-term incubation on solid medium. Clin Microbiol Infect 20(10):1001–1006CrossRefGoogle Scholar
  11. 11.
    Mauri C, Principe L, Bracco S, Meroni E, Corbo N, Pini B, Luzzaro F (2017) Identification by mass spectrometry and automated susceptibility testing from positive bottles: a simple, rapid, and standardized approach to reduce the turnaround time in the management of blood cultures. BMC Infect Dis 17(1):749.  https://doi.org/10.1186/s12879-017-2851-5 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Moreno-Camacho JL, Calva-Espinosa DY, Leal-Leyva YY, Elizalde-Olivas DC, Campos-Romero A, Alcántar-Fernández J (2017) Transformation from a conventional clinical microbiology laboratory to full automation. Lab Med Dec 49(1):e1–e8.  https://doi.org/10.1093/labmed/lmx079 CrossRefGoogle Scholar
  13. 13.
    Dauwalder O et al (2016) Does bacteriology laboratory automation reduce time to results and increase quality management? Clin Microbiol Infect 22(3):236–243CrossRefGoogle Scholar
  14. 14.
    Theparee T, Das S, Thomson RB Jr (2018) Total laboratory automation and matrix-assisted laser desorption ionization-time of flight mass spectrometry improve turnaround times in the clinical microbiology laboratory: a retrospective analysis. J Clin Microbiol 56(1):e01242–e01217PubMedGoogle Scholar
  15. 15.
    Mutters NT et al (2014) Performance of Kiestra total laboratory automation combined with MS in clinical microbiology practice. Ann Lab Med 34(2):111–117CrossRefGoogle Scholar
  16. 16.
    Burckhardt I, Horner S, Burckhardt F, Zimmermann S (2018) Detection of MRSA in nasal swabs-marked reduction of time to report for negative reports by substituting classical manual workflow with total lab automation. Eur J Clin Microbiol Infect Dis.  https://doi.org/10.1007/s10096-018-3308-5 CrossRefGoogle Scholar
  17. 17.
    Leli C, Cenci E, Cardaccia A, Moretti A, D’Alò F, Pagliochini R, Barcaccia M, Farinelli S, Vento S, Bistoni F, Mencacci A (2013) Rapid identification of bacterial and fungal pathogens from positive blood cultures by MALDI-TOF MS. Int J Med Microbiol 303(4):205–209CrossRefGoogle Scholar
  18. 18.
    EUCAST (2016) EUCAST clinical breakpoints v6. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Breakpoint_table.pdf, accessed 31 August 2018
  19. 19.
    EUCAST (2017) EUCAST clinical breakpoints v.7. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_7.1_Breakpoint_Tables.pdf, accessed 31 August 2018
  20. 20.
    EUCAST (2018) EUCAST clinical breakpoints v.8. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.0_Breakpoint_Tables.pdf, accessed 31 august 2018
  21. 21.
    Buehler SS, Madison B, Snyder SR, Derzon JH, Cornish NE, Saubolle MA, Weissfeld AS, Weinstein MP, Liebow EB, Wolk DM (2016) Effectiveness of practices to increase timeliness of providing targeted therapy for inpatients with bloodstream infections: a laboratory medicine best practices systematic review and meta-analysis. Clin Microbiol Rev 29(1):59–103CrossRefGoogle Scholar
  22. 22.
    Emonet S, Schrenzel J (2011) How could rapid bacterial identification improve the management of septic patients? Expert Rev Anti-Infect Ther 9(9):707–709CrossRefGoogle Scholar
  23. 23.
    Vincent JL (2008) Clinical sepsis and septic shock--definition, diagnosis and management principles. Langenbeck's Arch Surg 393(6):817–824CrossRefGoogle Scholar
  24. 24.
    Van den Poel B, Klak A, Desmet S, Verhaegen J (2018) How small modifications in laboratory workflow of blood cultures can have a significant impact on time to results. Eur J Clin Microbiol Infect Dis.  https://doi.org/10.1007/s10096-018-3309-4 CrossRefGoogle Scholar
  25. 25.
    Tabak YP, Vankeepuram L, Ye G, Jeffers K, Gupta V, Murray PR (2018) Blood Culture Turnaround Time in US Acute Care Hospitals and Implications for Laboratory Process Optimization. J Clin Microbiol.  https://doi.org/10.1128/JCM.00500-18
  26. 26.
    Peterson LR, Hamilton JD, Baron EJ, Tompkins LS, Miller JM, Wilfert CM et al (2001) Role of clinical microbiology laboratories in the management and control of infectious diseases and the delivery of health care. Clin Infect Dis 32(4):605–611CrossRefGoogle Scholar
  27. 27.
    Cooper GS, Havlir DS, Shlaes DM, Salata RA (1990) Polymicrobial bacteremia in the late 1980s: predictors of outcome and review of the literature. Medicine (Baltimore) 69(2):114–123CrossRefGoogle Scholar
  28. 28.
    Kiani D, Quinn EL, Burch KH, Madhavan T, Saravolatz LD, Neblett TR (1979) The increasing importance of polymicrobial bacteremia. JAMA 242(10):1044–1047CrossRefGoogle Scholar
  29. 29.
    Roselle GA, Watanakunakorn C (1979) Polymicrobial bacteremia. JAMA 242(22):2411–2413CrossRefGoogle Scholar
  30. 30.
    Royo-Cebrecos C, Gudiol C, Ardanuy C, Pomares H, Calvo M, Carratalà J (2017) A fresh look at polymicrobial bloodstream infection in cancer patients. PLoS One 12(10):e0185768.  https://doi.org/10.1371/journal.pone.0185768 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wisplinghoff H, Seifert H, Wenzel RP, Edmond MB (2003) Current trends in the epidemiology of nosocomial bloodstream infections in patients with haematological malignancies and solid neoplasms in hospitals in the United States. Clin Infect Dis 36(9):1103–1110CrossRefGoogle Scholar
  32. 32.
    Rello J, van Engelen TSR, Alp E, Calandra T, Cattoir V, Kern WV, Netea MG, Nseir S, Opal SM, van de Veerdonk FL, Wilcox MH, Wiersinga WJ (2018) Towards precision medicine in Sepsis: a position paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin Microbial Infect.  https://doi.org/10.1016/j.cmi.2018.03.011
  33. 33.
    Bassetti M, Righi E (2013) Multidrug-resistant bacteria: what is the threat? Hematology Am Soc Hematol Educ Program 2013:428–432CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Giuseppe Vittorio De Socio
    • 1
  • Francesco Di Donato
    • 2
  • Riccardo Paggi
    • 2
  • Chiara Gabrielli
    • 1
  • Alessandra Belati
    • 2
  • Giuseppe Rizza
    • 3
  • Martina Savoia
    • 3
  • Antonella Repetto
    • 4
  • Elio Cenci
    • 2
  • Antonella Mencacci
    • 2
  1. 1.Clinic of Infectious DiseasesPerugia General HospitalPerugiaItaly
  2. 2.Medical Microbiology, Department of MedicineUniversity of PerugiaPerugiaItaly
  3. 3.PharmacyPerugia General HospitalPerugiaItaly
  4. 4.MicrobiologyPerugia General HospitalPerugiaItaly

Personalised recommendations