From dengue to Zika: the wide spread of mosquito-borne arboviruses

  • Shivani Sukhralia
  • Mansi VermaEmail author
  • Shruthi Gopirajan
  • P. S. Dhanaraj
  • Rup Lal
  • Neeti Mehla
  • Chhaya Ravi Kant


The worldwide invasion of arthropod-borne viruses (arboviruses) in recent decades is responsible for emerging public health threats. Some factors like climate change, urbanisation and uncontrolled population growth are fuelling their widespread. Arboviruses incorporate a vast collection of genetically diverse viral pathogens including that of dengue, Zika and chikungunya. These viruses are peculiar as they are zoonotic and are a serious harm to the society, with no particular therapy to neutralise their effect. So it is the need of the hour to develop an effective treatment against infections caused by them. This review focuses on some of the common families of mosquito-borne arboviruses and their most known members that are a threat to mankind and discusses their genome organisation, worldwide spread and negative influence on public health.


Arbovirus Dengue Zika Chikungunya YFV 



Authors acknowledge Dr. P. Hemalatha Reddy, Principal, Sri Venkateswara College, University of Delhi for constantly encouraging undergraduate students for research.

Authors’ contributions

MV and PSD conceived the idea of this research question. SS, MV and SG reviewed the literature and drafted the manuscript. PSD, RL, NM and CRK supported the interpretation of data from the literature and the revision of the manuscript. MV critically reviewed the manuscript. All authors read and approved the final manuscript.


Not applicable. This work was done by undergraduate students of Sri Venkateswara College.

Compliance with ethical standards

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Competing interests

The authors declare that they have no competing interests.


  1. 1.
    Liang G, Gao X, Gould EA (2015) Factors responsible for the emergence of arboviruses; strategies, challenges and limitations for their control. Emerg Microbes Infec 4:e18. CrossRefGoogle Scholar
  2. 2.
    Gould E, Pettersson J, Higgs S, Charrel R, de Lambalerrie X (2017) Emerging arboviruses: why today? Open Health 4:1–13. Google Scholar
  3. 3.
    Kuno G, Chang GJ (2005) Biological transmission of arboviruses: re-examination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev 18:608–637. CrossRefGoogle Scholar
  4. 4.
    Shope RE, Bunyaviruses, in: Baron S, editor, Medical microbiology, fourth ed, Galveston (TX): University of Texas Medical Branch at Galveston; 1996, Chapter 56.
  5. 5.
    Calisher CH (1994) Medically important arboviruses of the United States and Canada. Clin Microbiol Rev 7:89–116 CrossRefGoogle Scholar
  6. 6.
    Brinton MA, Basu M Functions of the 3′ and 5′ genome RNA regions of members of the genus Flavivirus. Virus Res 206(201):108–119.
  7. 7.
    Schmaljohn AL, McClain D (1996) Alphaviruses (Togaviridae) and Flaviviruses (Flaviviridae). In: Baron S, editor. Medical microbiology, fourth ed. University of Texas Medical Branch at Galveston, Galveston (TX) Chapter 54. Google Scholar
  8. 8.
    Mackenzie JS, Gubler DJ, Petersen LR (2004) Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10:98–109. CrossRefGoogle Scholar
  9. 9.
    Paula T, Pablo R, Eugenia V, Pablo B, Sabino P, Jose M, Vincente S (2009) New drug targets for hepatitis C and other Flaviviridae viruses. Infect Disord Drug Targets 9:133–147. CrossRefGoogle Scholar
  10. 10.
    Gardner CL, Ryman KD (2010) Yellow fever: a reemerging threat. Clin LabMed 30(1):237–260. Google Scholar
  11. 11.
    Couto-Lima D, Madec Y, Bersot MI, Campos SS, Motta MDA, Santos FBD et al (2017) Potential risk of re-emergence of urban transmission of yellow fever virus in Brazil facilitated by competent Aedes populations. Sci Rep 7:4848. CrossRefGoogle Scholar
  12. 12.
    McElroy KL, Tsetsarkin KA, Vanlandingham DL, Higgs S (2006) Role of the yellow fever virus structural protein genes in viral dissemination from the Aedes aegypti mosquito midgut. J Gen Virol 87:2993–3001. CrossRefGoogle Scholar
  13. 13.
    Ortiz-Martínez Y, Patiño-Barbosa AM, Rodriguez-Morales AJ (2017) Yellow fever in the Americas: the growing concern about new epidemics. F1000Research 6:398. CrossRefGoogle Scholar
  14. 14.
    Weaver SC, Reisen WK (2010) Present and future arboviral threats. Antivir Res 85:328–345. CrossRefGoogle Scholar
  15. 15.
    Guzman MG, Halstead SB, Artsob H et al (2010) Dengue: a continuing global threat. Nat. Rev. Microbiol. 8:S7–S16.
  16. 16.
    GBD Disease and Injury Incidence and Prevalence Collaborators (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1545–1602CrossRefGoogle Scholar
  17. 17.
    Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL et al (2013) The global distribution and burden of dengue. Nature 496:504–507. CrossRefGoogle Scholar
  18. 18.
    Shuzhen S, Martin L, Hibberd ML (2016) Genomic approaches for understanding dengue: insights from the virus, vector, and host. Genome Biol 17:38. CrossRefGoogle Scholar
  19. 19.
    Gebhard LG, Filomatori CV, Gamarnik AV (2011) Functional RNA elements in the dengue virus genome. Viruses 3:1739–1756. CrossRefGoogle Scholar
  20. 20.
    Zeidler JD, Fernandes-Siqueira LO, Barbosa GM, Da Poian AT (2017) Non-canonical roles of dengue virus non-structural proteins. Viruses 9:42. CrossRefGoogle Scholar
  21. 21.
    Vasilakis N, Cardosa J, Hanley NA, Holmes C, Weaver SC (2011) Fever from the Forest: prospects for the continued emergence of sylvatic dengue virus and its impact on public health. Nat Rev Microbiol 9:532–541. CrossRefGoogle Scholar
  22. 22.
    Yung CF, Lee KS, Thein TL, Tan LK, Gan VC, Wong JGX, Leo YS (2015) Dengue serotype-specific differences in clinical manifestation, laboratory parameters and risk of severe disease in adults, Singapore. Am J Trop Med Hyg 92:999–1005. CrossRefGoogle Scholar
  23. 23.
    Guzman MG, Kouri G (2003) Dengue and dengue hemorrhagic fever in the Americas: lessons and challenges. J Clin Virol 27:1–13. CrossRefGoogle Scholar
  24. 24.
    Balmaseda A, Hammond SN, Perez L, Tellez Y, Saborio SI, Mercado JC, Cuadra R, Rocha J, Perez MA, Silva S, Rocha C, Harris E (2003) Serotype-specific differences in clinical manifestations of dengue. Am. J. Trop. Med. Hyg 74:449–456 CrossRefGoogle Scholar
  25. 25.
    Coudeville L, Baurin N, L’Azou M, Guy B (2016) Potential impact of dengue vaccination: insights from two large-scale phase III trials with a tetravalent dengue vaccine. Vaccine 34:6426–6435. CrossRefGoogle Scholar
  26. 26.
    Pastula DM, Smith DE, Beckham JD, Tyler KL (2016) Four emerging arboviral diseases in North America: Jamestown Canyon, Powassan, chikungunya, and Zika virus diseases. J Neurovirol 22:257–260. CrossRefGoogle Scholar
  27. 27.
    Musso D, Gubler DJ (2016) Zika virus. Clin Microbiol Rev 29:487–524. CrossRefGoogle Scholar
  28. 28.
    Alam A, Ali S, Ahamad S, Malik MZ, Ishrat R (2016) From ZikV genome to vaccine: in silico approach for the epitope based peptide vaccine against Zika virus envelope glycoprotein. Immunology 149:386–399. CrossRefGoogle Scholar
  29. 29.
    Lowe R, Barcellos C, Brasil P et al (2018) The Zika virus epidemic in Brazil: from discovery to future implications. Int J Environ Res Public Health 15:96. CrossRefGoogle Scholar
  30. 30.
    Marini G, Guzzetta G, Rosà R, Merler S (2017) First outbreak of Zika virus in the continental United States: a modelling analysis. Eur Secur 22(37):30612. Google Scholar
  31. 31.
    Saiz J-C, Vázquez-Calvo Á, Blázquez AB, Merino-Ramos T, Escribano-Romero E, Martín-Acebes MA (2016) Zika virus: the latest newcomer. Front. Microbiol 7:496. Google Scholar
  32. 32.
    Gyawali N, Bradbury RS, Andrew W, Taylor-Robinson AW (2016) The global spread of Zika virus: is public and media concern justified in regions currently unaffected? Infect. Dis. Poverty 5:37. CrossRefGoogle Scholar
  33. 33.
    Haddow A, Schuh A, Yasuda C, Kasper M, Heang V, Huy R, Guzman H, Tesh R, Weaver S (2012) Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Neglect TropDis 6:1477. CrossRefGoogle Scholar
  34. 34.
    Tang BL (2016) Zika virus as a causative agent for primary microencephaly: the evidence so far. Arch. Microbiol. 198:595–601. CrossRefGoogle Scholar
  35. 35.
    Morrison C (2016) DNA vaccines against Zika virus speed into clinical trials. Nat Rev Drug Discov 15:521–522. CrossRefGoogle Scholar
  36. 36.
    Yun SI, Lee YM (2014) Japanese encephalitis: the virus and vaccines. Hum. Vaccin. Immunother 10:263–279. CrossRefGoogle Scholar
  37. 37.
    Wang H, Liang G (2015) Epidemiology of Japanese encephalitis: past, present, and future prospects. Ther Clin Risk Manag 11:435–448. Google Scholar
  38. 38.
    Solomon T, Vaughn DW (2002) Pathogenesis and clinical features of Japanese encephalitis and West Nile virus infections. Curr Top Microbiol Immunol 267:171–194 Google Scholar
  39. 39.
    Solomon T, Ni H, Beasley DWC, Ekkelenkamp M, Cardosa MJ, Barrett ADT (2003) Origin and evolution of Japanese encephalitis virus in Southeast Asia. J.Virol. 77:3091–3098. CrossRefGoogle Scholar
  40. 40.
    Tiwari S, Singh KR, Tiwari R, Dhole TN (2012) Japanese encephalitis: a review of the Indian perspective. Braz J Infect Dis 16:564–573. CrossRefGoogle Scholar
  41. 41.
    Amicizia D, Zangrillo F, Lai PL, Iovine M, Panatto D (2018) Overview of Japanese encephalitis disease and its prevention. Focus on IC51 vaccine (IXIARO®). J. Prev. Med. Hyg 59:E99–E107. Google Scholar
  42. 42.
    Barrows NJ, Campos RK, Liao K-C et al (2018) Biochemistry and molecular biology of flaviviruses. Chem. Rev. 118:4448–4482. CrossRefGoogle Scholar
  43. 43.
    Basu A, Dutta K (2017) Recent advances in Japanese encephalitis, Version 1. F1000Res 6:259. CrossRefGoogle Scholar
  44. 44.
    Smithburn KC, Hughes TP, Burke AW, Paul JH (1940) A neurotropic virus isolated from the blood of a native of Uganda. Am J Trop Med 20:471–492 CrossRefGoogle Scholar
  45. 45.
    Hayes C (2002) West Nile virus: Uganda, 1937, to New York City, 1999. Ann. NY Acad. Sci. 951:25–37 CrossRefGoogle Scholar
  46. 46.
    Blitvich B (2008) Transmission dynamics and changing epidemiology of West Nile virus. Anim Health Res Rev 9:71–86. CrossRefGoogle Scholar
  47. 47.
    Berthet FX, Zeller HG, Drouet MT, Rauzier J, Digoutte JP, Deubel V (1997) Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses. J Gen Virol 78:2293–2297. CrossRefGoogle Scholar
  48. 48.
    Scherret JH, Poidinger M, Mackenzie JS, Broom AK, Deubel V, Lipkin WI, Briese T, Gould EA, Hall RA (2001) The relationships between West Nile and Kunjin virus. Emerg Infect Dis 7:697–705. CrossRefGoogle Scholar
  49. 49.
    Burt FJ, Grobbelaar AA, Leman PA, Anthony FS, Gibson GVF, Swanepoel R (2002) Phylogenetic relationships of southern African West Nile virus isolates. Emerg Infect Dis 8:820–826 CrossRefGoogle Scholar
  50. 50.
    Bakonyi T, Ivanics É, Erdélyi K, Ursu K, Ferenczi E, Weissenböck H, Nowotny N (2006) Lineage 1 and 2 strains of encephalitic West Nile virus, Central Europe. Emerg Infect Dis 12:618–623. CrossRefGoogle Scholar
  51. 51.
    Rossi SL, Ross TM, Evans JD (2010) West Nile Virus. Clin Lab Med 30:47–65. CrossRefGoogle Scholar
  52. 52.
    Hollidge BS, González-Scarano F, Soldan SS (2010) Arboviral encephalitides: transmission, emergence, and pathogenesis. J. Neuroimmune Pharmacol. 5:428–442. CrossRefGoogle Scholar
  53. 53.
    Rossini G, Landini MP, Gelsomino F, Sambri V, Varani S (2013) Innate host responses to West Nile virus: implications for central nervous system immunopathology. World J. Virol. 2:49–56. CrossRefGoogle Scholar
  54. 54.
    Leis AA, Stokic DS (2012) Neuromuscular manifestations of West Nile virus infection. Front. Neurol 3:37. CrossRefGoogle Scholar
  55. 55.
    Petersen LR, Brault AC, Nasci RS (2013) West Nile virus: review of the literature. JAMA 310:308–315. CrossRefGoogle Scholar
  56. 56.
    Pealer LN, Marfin AA, Petersen LR, Lanciotti RS, Page PL, Stramer SL, Stobierski MG, Signs K, Newman B, Kapoor H, Goodman JL, Chamberland ME (2003) Transmission of West Nile virus through blood transfusion in the United States in 2002. N Engl J Med 349:1236–1245. CrossRefGoogle Scholar
  57. 57.
    Caglioti C, Lalle E, Castilletti C, Carletti F, Capobianchi MR, Bordi L (2013) Chikungunya virus infection: an overview. New Microbiol 36:211–227 Google Scholar
  58. 58.
    Lo Presti A, Lai A, Cella E, Zehender G, Ciccozzi M (2016) Chikungunya virus, epidemiology, clinics and phylogenesis: a review. Asian Pac J Trop Med 7:925–932. CrossRefGoogle Scholar
  59. 59.
    Carrera JP, Díaz Y, Denis B, et al (2017) Unusual pattern of chikungunya virus epidemic in the Americas, the Panamanian experience. Aguilar PV, ed., PLoS Negl Tropl Dis 11, 2.
  60. 60.
    Organization PH. Chikungunya [Internet], Available:
  61. 61.
    Simizu B, Yamamoto K, Hashimoto K, Ogata T (1984) Structural proteins of chikungunya virus. J Virol 51:254–258 Google Scholar
  62. 62.
    Hrnjaković Cvjetković IB, Cvjetković D, Patić A, Nikolić N, Stefan Mikić S, Milošević V (2015) Chikungunya—a serious threat for public health. Med Pregl 68:122–125. CrossRefGoogle Scholar
  63. 63.
    Eifan S, Schnettler E, Dietrich I, Kohl A, Blomström A-L (2013) Non-structural proteins of arthropod-borne bunyaviruses: roles and functions. Viruses 5:2447–2468. CrossRefGoogle Scholar
  64. 64.
    Elliott RM (2009) Bunyaviruses and climate change. Clin Microbiol Infect 15:510–517. CrossRefGoogle Scholar
  65. 65.
    Horne KM, Vanlandingham DL (2014) Bunyavirus–vector interactions. Viruses 6:4373–4397. CrossRefGoogle Scholar
  66. 66.
    Ikegami T, Makino S (2009) Rift Valley fever vaccines. Vaccine 27:69–72. CrossRefGoogle Scholar
  67. 67.
    Pepin M, Bouloy M, Bird BH, Kemp A, Paweska J (2010) Rift Valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. Vet Res 41:61 CrossRefGoogle Scholar
  68. 68.
    Mansfield KL, Banyard AC, McElhinney L, Johnson N, Horton DL, Hernández-Triana LM, Fooks AR (2015) Rift Valley fever virus: a review of diagnosis and vaccination, and implications for emergence in Europe. Vaccine 33:5520–5531. CrossRefGoogle Scholar
  69. 69.
  70. 70.
    Ikegami T, Makino S (2011) The pathogenesis of Rift Valley fever. Viruses 3:493–519. CrossRefGoogle Scholar
  71. 71.
    Attoui H, Mertens PPC, Becnel J, Belaganahalli S, Bergoin M et al (2011) Ninth Report of the International Committee on Taxonomy of Viruses. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Family: Reoviridae. Elsevier/Academic Press, London, pp 541–637 ISBN: 0123846846978-0-12-384684-6Google Scholar
  72. 72.
    Lamrani A, Tubert-Bitter P, Hill C, Escolano S (2017) A benefit–risk analysis of rotavirus vaccination, France, 2015. Eurosurveillance 22:17–00041. CrossRefGoogle Scholar
  73. 73.
    Miyazaki N, Uehara-Ichiki T, Xing L, Bergman L, Higashiura A, Nakagawa A, Omura T, Cheng RH (2008) Structural evolution of Reoviridae revealed by Oryzavirus in acquiring the second capsid shell. J. Virol. 82:11344–11353. CrossRefGoogle Scholar
  74. 74.
    Danthi P, Holm GH, Stehle T, Dermody TS (2013) Reovirus receptors, cell entry and proapoptotic signaling. Adv Exp Med Biol 790:42–71. CrossRefGoogle Scholar
  75. 75.
    Clarke P, Debiasi RL, Goody R, Hoyt CC, Richardson-Burns S, Tyler KL (2005) Mechanisms of reovirus induced cell death and tissue injury: role of apoptosis and virus-induced perturbation of host-cell signaling and transcription factor activation. Viral Immunol 18:89–115. CrossRefGoogle Scholar
  76. 76.
    Attoui H, Mendez-Lopez MR, Rao S, Hurtado-Alendes A, Lizaraso-Caparo F, Jaafar FM, Samuel AR, Belhouchet M, Pritchard LI, Melville L, Weir RP, Hyatt AD, Davis SS, Lunt R, Calisher CH, Tesh RB, Fujita R, Mertens PP (2009) Peruvian horse sickness virus and Yunnan orbivirus, isolated from vertebrates and mosquitoes in Peru and Australia. Virol 394:298–310. CrossRefGoogle Scholar
  77. 77.
    MohdJaafar F, Belhouchet M, Belaganahalli M, Tesh RB, Mertens PPC, Attoui H (2014) Full-genome characterisation of Orungo, Lebombo and Changuinola viruses provides evidence for co-evolution of orbiviruses with their arthropod vectors, Qiu J, ed., PLoS ONE, 9.1, e86392.
  78. 78.
    Attoui H, Jaafar FM, de Micco P, de Lamballerie X (2005) Coltiviruses and seadornaviruses in North America, Europe, and Asia. Emerg Infect Dis 11:1673–1679. CrossRefGoogle Scholar
  79. 79.
    Weiss S, Dabrowski PW, Kurth A, Leendertz SAJ, Leendertz FH (2017) A novel Coltivirus-related virus isolated from free-tailed bats from Côte d’Ivoire is able to infect human cells in vitro. Virol. J. 14:181. CrossRefGoogle Scholar
  80. 80.
    Wong AH, Cheng PKC, Lai MYY et al (2012) Virulence potential of fusogenic orthoreoviruses. Emerg. Infect. Dis. 18:944–948. Google Scholar
  81. 81.
    Brower V (2001) Vector-borne diseases and global warming: are both on an upward swing?: Scientists are still debating whether global warming will lead to a further spread of mosquitoes and the diseases they transmit. EMBO Rep. 2:755–757. CrossRefGoogle Scholar
  82. 82.
    Franz AWE, Kantor AM, Passarelli AL, Clem RJ (2015) Tissue barriers to arbovirus infection in mosquitoes. Viruses 7:3741–3767. CrossRefGoogle Scholar
  83. 83.
    Lim EXY, Lee WS, Madzokere ET, Herrero LJ (2018) Mosquitoes as suitable vectors for Alphaviruses. Viruses 10:84. CrossRefGoogle Scholar
  84. 84.
    Huang Y-JS, Higgs S, Vanlandingham DL (2017) Biological control strategies for mosquito vectors of arboviruses. Insects 8:21. CrossRefGoogle Scholar
  85. 85.
    Araújo HRC, Carvalho DO, Ioshino RS, Costa-da-Silva AL, Capurro ML (2015) Aedes aegypti control strategies in Brazil: incorporation of new technologies to overcome the persistence of dengue epidemics. Forschler BT, ed., Insects, 6,576–594.
  86. 86.
    Alphey L, McKemey A, Nimmo D et al (2013) Genetic control of Aedes mosquitoes. Pathog GlobHealth 107:170–179. CrossRefGoogle Scholar
  87. 87.
    Kamtchum-Tatuene J, Makepeace BL, Benjamin L, Baylis M, Solomon T (2017) The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections. Curr Opin Infect Dis 30:108–116. Google Scholar
  88. 88.
    Carrillo C, Tulman ER, Delhon G, Lu Z, Carreno A, Vagnozzi A, Kutish GF, Rock DL (2005) Comparative genomics of foot-and-mouth disease virus. J Virol 79:6487–6504. CrossRefGoogle Scholar
  89. 89.
    Jun S-R, Leuze MR, Nookaew I, et al (2015) Ebolavirus comparative genomics. Greber U, ed., FEMS Microbiol Rev, 39,764–778.
  90. 90.
    Chiara M, Manzari C, Lionetti C et al (2016) Geographic population structure in Epstein-Barr virus revealed by comparative genomics. Genome Biol. Evol 8:3284–3291. CrossRefGoogle Scholar
  91. 91.
    Severson DW, Behura SK (2012) Mosquito genomics: progress and challenges. Annu Rev Entomol 57:143–166. CrossRefGoogle Scholar
  92. 92.
    Tang Y, Rodpradit P, Chinnawirotpisan P et al (2010) Comparative analysis of full-length genomic sequences of 10 dengue serotype 1 viruses associated with different genotypes, epidemics, and disease severity isolated in Thailand over 22 years. Am J Trop Med Hyg 83:1156–1165. CrossRefGoogle Scholar
  93. 93.
    Osman O, Fong MY, Devi S (2008) Complete genome sequence analysis of dengue virus type 2 isolated in Brunei. Virus Res 135:48–52. CrossRefGoogle Scholar
  94. 94.
    King C-C, Chao D-Y, Chien L-J et al (2008) Comparative analysis of full genomic sequences among different genotypes of dengue virus type 3. Virol J 5:63. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sri Venkateswara CollegeUniversity of DelhiNew DelhiIndia
  2. 2.Molecular Biology Laboratory, Department of ZoologyUniversity of DelhiDelhiIndia
  3. 3.Department of Applied SciencesIndira Gandhi Delhi Technical UniversityDelhiIndia

Personalised recommendations