Detection of toxoplasma-specific immunoglobulin G in human sera: performance comparison of in house Dot-ELISA with ECLIA and ELISA

  • Aref Teimouri
  • Mohammad Hossein Modarressi
  • Saeedeh Shojaee
  • Mehdi Mohebali
  • Nima Zouei
  • Mostafa Rezaian
  • Hossein KeshavarzEmail author
Original Article


In the current study, performance of electrochemiluminescence immunoassay (ECLIA) in detection of anti-toxoplasma IgG in human sera was compared with that of enzyme-linked immunosorbent assay (ELISA). Furthermore, performance of an in house Dot-ELISA in detection of anti-toxoplasma IgG was compared with that of ECLIA and ELISA. In total, 219 human sera were tested to detect anti-toxoplasma IgG using Dynex DS2® and Roche Cobas® e411 Automated Analyzers. Discordant results rechecked using immunofluorescence assay (IFA). Then, sera were used in an in house Dot-ELISA to assess toxoplasma-specific IgG. Of the 219 samples, two samples were found undetermined using ECLIA but reactive using ELISA. Using IFA, the two sera were reported unreactive. Furthermore, two samples were found reactive using ECLIA and unreactive using ELISA. These samples were reported reactive using IFA. The overall agreement for the two former methods was 98% (rZ0.98.1; P < 0.001). The intrinsic parameters calculated for in house Dot-ELISA included sensitivity of 79.5, specificity of 78.2, and accuracy of 78.9%, compared to ECLIA and ELISA. Positive and negative predictive values included 82.9 and 74.2%, respectively. A 100% sensitivity was found in in house Dot-ELISA for highly reactive sera in ECLIA and ELISA. ECLIA is appropriate for the first-line serological screening tests and can replace ELISA due to high speed, sensitivity, and specificity, particularly in large laboratories. Dot-ELISA is a rapid, sensitive, specific, cost-effective, user-friendly, and field-portable technique and hence can be used for screening toxoplasmosis, especially in rural fields or less equipped laboratories.


Anti-toxoplasma IgG In house Dot-ELISA ECLIA ELISA 



electrochemiluminescence immunoassay


enzyme-linked immunosorbent assay


immunoglobulin G


dye test


immunofluorescence assay


complement fixation test


modified agglutination test


latex agglutination test


direct agglutination test


indirect fluorescent antibody test


indirect hemagglutination assay

PBS-M 3%

phosphate-buffered saline containing 3% of non-fat dry milk


phosphate-buffered saline containing tween 20


horseradish peroxidase


ortho phenylenediamine


optical density


nitrocellulose membrane


International Business Machines Corporation


Statistical Package for the Social Sciences



We would like to acknowledge all staff from the toxoplasmosis laboratory (Department of Medical Parasitology and Mycology, Tehran University of Medical Sciences, Tehran, Iran) for their useful collaboration.

Authors’ contribution

HK and MHM conceived the study. NZ collected and prepared the samples. AT performed the experiments with substantial contributions by SS. AT drafted the manuscript and revised by SS, MM, and MR. All authors read and approved the final version of the manuscript.

Funding information

This study was supported by the Tehran University of Medical Sciences and Health Services (Project Number: 29999-160-03-94), Tehran, Iran.

Compliance with ethical standards

Ethics approval and consent to participate

The study was approved by the Ethical Committee of Tehran University of Medical Sciences.

Consent for publication

Not applicable (no individual person’s data).

Availability of data and material

The data that support the findings of this study are available on reasonable request to the corresponding author.

Competing interests

The authors declare that they have no conflict of interest.


  1. 1.
    Dubey JP (2010). Toxoplasmosis of animals and humans. 2rd edn. CRC Press Inc. Boca Raton, New York, pp 1–313Google Scholar
  2. 2.
    Alvarado-Esquirel C, Estrada-Martinez S, Liesenfeld O (2011) Toxoplasma gondii infection in workers occupationally exposed to unwashed raw fruits and vegetables: a case control seroprevalence study. Parasit Vectors 16:4–235Google Scholar
  3. 3.
    Tenter AM, Heckeroth AR, Weiss LM (2000) Toxoplasma gondii: from animals to humans. Int J Parasitol 30:1217–1258CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Walle F, Kebede N, Tsegaye A, Kassa T (2013) Seroprevalence and risk factors for toxoplasmosis in HIV infected and non-infected individuals in Bahir Dar, Northwest Ethiopia. Parasit Vectors 6:15–10CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tuazon CU (1989) Toxoplasmosis in AIDS patients. J Antimicrob Chemother 23(suppl A):77–82CrossRefPubMedGoogle Scholar
  6. 6.
    Robert-Gangneux F, Darde ML (2012) Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev 25:264–296CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Liu Q, Wang Z-D, Huang S-Y, Zhu X-Q (2015) Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasit Vectors 8(1):292CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Acharya D, Bastola P, Le L, Paul AM, Fernandez E, Diamond MS et al (2016) An ultrasensitive electrogenerated chemiluminescence-based immunoassay for specific detection of Zika virus. Sci Rep 2016(6):32227CrossRefGoogle Scholar
  9. 9.
    Dard C, Fricker-Hidalgo H, Brenier-Pinchart MP, Pelloux H (2016) Relevance of and new developments in serology for toxoplasmosis. Trends Parasitol 32:492–506CrossRefPubMedGoogle Scholar
  10. 10.
    Pappas MG, Hajkowski R, Hockmeyer WT (1983) Dot enzyme-linked immunosorbent assay (Dot-ELISA): a micro technique for the rapid diagnosis of visceral leishmaniasis. J lmmlmologcal Methods 64:205–214CrossRefGoogle Scholar
  11. 11.
    Gupta A, Dixit AK, Dixit P (2008) Dot-ELISA in the diagnosis of parasitic diseases of animals. J Parasit Dis 32(1):10–14Google Scholar
  12. 12.
    Zhang K, Lin G, Han Y, Li J (2016) Serological diagnosis of toxoplasmosis and standardization. Clin Chim Acta 46:83–89CrossRefGoogle Scholar
  13. 13.
    Marquette CA, Blum LJ (2008) Electro-chemiluminescent biosensing. Anal Bioanal Chem 390:155–168CrossRefPubMedGoogle Scholar
  14. 14.
    Ali-Heydari S, Keshavarz H, Shojaee S, Mohebali M (2013) Diagnosis of antigenic markers of acute toxoplasmosis by IgG avidity immunoblotting. Parasite 20(18):20–18Google Scholar
  15. 15.
    Hawkes R, Niday E, Gordon J (1982) A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem 119(1):142–147CrossRefPubMedGoogle Scholar
  16. 16.
    Pappas MG (1988) Recent applications of the Dot-ELISA in immunoparasitology. Vet Parasitol 29(2–3):105–129CrossRefPubMedGoogle Scholar
  17. 17.
    IBM Corp Released (2012) IBM SPSS statistics for windows, version 21.0. Armonk, NY: IBM CorpGoogle Scholar
  18. 18.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174CrossRefPubMedGoogle Scholar
  19. 19.
    Jacobson RH (1998) Validation of serological assays for diagnosis of infectious diseases. Rev Sci Tech 17(2):469–526CrossRefPubMedGoogle Scholar
  20. 20.
    Hayde M, Salzer HR, Gittler G, Aspock H, Pollak A (1995) Microparticle enzyme immunoassay (MEIA) for toxoplasma specific immunoglobulin G in comparison to the Sabin-Feldman dye test. A pilot study. Wien Klin Wochenschr 107:133–136PubMedGoogle Scholar
  21. 21.
    Kasper DC, Prusa AR, Hayde M, Gerstl N, Pollak A, Herkner KR, Reiter-Reisacher R (2009) Evaluation of the Vitros ECiQ immunodiagnostic system for detection of anti-toxoplasma immunoglobulin G and immunoglobulin M antibodies for confirmatory testing for acute Toxoplasma gondii infection in pregnant women. J Clin Microbiol 47:164–167CrossRefPubMedGoogle Scholar
  22. 22.
    Petersen E, Borobio MV, El G et al (2005) European multicenter study of the LIAISON automated diagnostic system for determination of Toxoplasma gondii-specific immunoglobulin G (IgG) and IgM and the IgG avidity index. J Clin Microbiol 43:1570–1574CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tekkesin N, Keskin K, Kılınc C, Orgen N, Molo K (2011) Detection of immunoglobulin G antibodies to Toxoplasma gondii: evaluation of two commercial immunoassay systems. J Microbiol Immunol Infect 44:21–26CrossRefPubMedGoogle Scholar
  24. 24.
    Prusa AR, Hayde M, Unterasinger L, Pollak A, Herkner KR et al (2010) Evaluation of the Roche Elecsys Toxo IgG and IgM electrochemiluminescence immunoassay for the detection of gestational Toxoplasma infection. Diagn Microbiol Infect Dis 68(4):352–357CrossRefPubMedGoogle Scholar
  25. 25.
    Murat JB, Hidalgo HF, Brenier-Pinchart MP, Pelloux H (2013) Human toxoplasmosis: which biological diagnostic tests are best suited to which clinical situations? Expert Rev Anti-Infect Ther 11(9):943–956CrossRefPubMedGoogle Scholar
  26. 26.
    Wilson M, Remington JS, Clavet C, Varney G, Press C, Ware D (1997) Evaluation of six commercial kits for detection of human immunoglobulin M antibodies to Toxoplasma gondii. J Clin Microbiol 35:3112–3115PubMedPubMedCentralGoogle Scholar
  27. 27.
    Syme NR, Toft AD, Stoddart M, Beckett GJ (2011) Clinical performance of the Roche cobas e411 automated assay system for thyrotropin-receptor antibodies for the diagnosis of Graves’ disease. Ann Clin Biochem 48(5):471–473CrossRefPubMedGoogle Scholar
  28. 28.
    Selseleh M, Keshavarz H, Mohebali M, Shojaee S, et al (2012) Production and Evaluation of Toxoplasma gondii Recombinant GRA7 for Serodiagnosis of Human Infections. Korean J Parasitol 50(3):233–238Google Scholar
  29. 29.
    Leser PG, de Assis Rocha LS, Moura MEG, Ferreira AW (2003) Comparison of semi-automatized assays for anti-T. gondii IgG detection in low-reactivity serum samples: importance of the results in patient counseling. J Bras Patol Med Lab 39:107–110CrossRefGoogle Scholar
  30. 30.
    Meylan P, Paris L, Liesenfeld O (2015) Multicenter evaluation of the Elecsys Toxo IgG and IgM tests for the diagnosis of infection with Toxoplasma gondii. Eur J Microbiol Immunol 5(2):150–158CrossRefGoogle Scholar
  31. 31.
    Prusa AR, Hayde M, Unterasinger L, Pollak A, Herkner KR et al (2010) Evaluation of the Roche Elecsys Toxo IgG and IgM electrochemiluminescence immunoassay for the detection of gestational Toxoplasma infection. Diagn Microbiol Infect Dis 68:352–357CrossRefPubMedGoogle Scholar
  32. 32.
    Van Helden J (2009) Performance of Elecsys toxo IgG and IgM immunoassays. Clin Lab 55:267–273PubMedGoogle Scholar
  33. 33.
    Murat JB, L’Ollivier C, Fricker Hidalgo H, Franck J, Pelloux H et al (2012) Evaluation of the new Elecsys Toxo IgG avidity assay for toxoplasmosis and new insights into the interpretation of avidity results. Clin Vaccine Immunol 19:1838–1843CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Schaefer LE, Dyke JW, Meglio FD, Murray PR, Crafts W, Niles AC (1989) Evaluation of microparticle enzyme immunoassays for immunoglobulins G and M to rubella virus and Toxoplasma gondii on the Abbott IMx automated analyzer. J Clin Microbiol 27:2410–2413PubMedPubMedCentralGoogle Scholar
  35. 35.
    Selseleh M, Keshavarz H, Mohebali M, Shojaee S, Modarressi MH, Eshragian M (2012) Production and evaluation of Toxoplasma gondii recombinant surface antigen 1 (SAG1) for serodiagnosis of acute and chronic Toxoplasma infection in human sera. Iran J Parasitol 7:1–9Google Scholar
  36. 36.
    Tenter AM (1988) Comparison of Dot-ELISA, ELISA and IFAT for the detection of IgG antibodies to Sarcocystis muris in experimentally infected and immunized mice. Vet Parasit 29:89–104CrossRefGoogle Scholar
  37. 37.
    Vercammen F, Berkvens D, Brandt J, Vansteenkiste W (1998) A sensitive and specific 30-min Dot-ELISA for the detection of anti-leishmania antibodies in the dog. Vet Parasitol 79:221–228CrossRefPubMedGoogle Scholar
  38. 38.
    Wanduragala L, Kakoma I, Clabaugh GW, Abeygunawardena I, Levy MG, Ristic M (1987) Development of dot-enzyme immunoassay for diagnosis of canine babesiosis. Am J Trop Med Hyg 36:20–21CrossRefPubMedGoogle Scholar
  39. 39.
    Montenegro James S, Guillen AT, Toro M (1992) Dot-ELISA para el diagnostico serologico de la anaplasmosis y babesiosis bovina. Rev Ciesstifica FCV de Luz II:23–29Google Scholar
  40. 40.
    Camus E, Montenegro James S (1994) Bovine anaplasmosis and babesiosis in the lesser antilles: risk assessment of an unstable epidemiologic situation. Vet Res 25:313–317PubMedGoogle Scholar
  41. 41.
    Mattioli RC, Janneh L, Corr N, Faye JA, Pandey US, Verhulet A (1997) Seasonal prevalence of ticks and tick transmitted haemoparasites in traditionally managed N’Dama cattle with reference to strategic tick control in the Gambia. Med Vet Entomol 11:342–348CrossRefPubMedGoogle Scholar
  42. 42.
    Jafarpour Azami S, Keshavarz H, Rezaian M, Mohebali M, Shojaee S (2011) Rapid detection of Toxoplasma gondii antigen in experimentally infected mice by dot-ELISA. Iranian J Parasitol 6:28–33Google Scholar
  43. 43.
    Siavashi MR, Taherkhani H, Rezaei KR, Razavi Deligani MR, Assmar M (2005) Comparison of dot-ELISA and sandwich ELISA diagnostic tests in detection of human hydatidosis. Iran Biomed J 9:91–94Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Aref Teimouri
    • 1
    • 2
  • Mohammad Hossein Modarressi
    • 3
  • Saeedeh Shojaee
    • 1
  • Mehdi Mohebali
    • 1
  • Nima Zouei
    • 1
  • Mostafa Rezaian
    • 1
  • Hossein Keshavarz
    • 1
    Email author
  1. 1.Department of Medical Parasitology and Mycology, School of Public HealthTehran University of Medical SciencesTehranIran
  2. 2.Students Scientific Research CenterTehran University of Medical SciencesTehranIran
  3. 3.Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran

Personalised recommendations