Advertisement

The possible zoonotic diseases transferring from pig to human in Vietnam

  • Dinh-Toi Chu
  • Tran Uyen Ngoc
  • Thien Chu-DinhEmail author
  • Vo Truong Nhu Ngoc
  • Bui Van Nhon
  • Van-Huy PhamEmail author
  • Le Long Nghia
  • Le Quynh Anh
  • Thi Hong Van Pham
  • Nguyen Duc Truong
Review
  • 36 Downloads

Abstract

Southeast Asia is considered one of worldwide hotspots consisting many distinct zoonotic infections. With optimal condition for the development of various pathogens, Vietnam is facing serious risks of zoonotic diseases. Besides, more than 50% Vietnamese people settle in rustic areas and earn their livings through small-scale animal breeding. It is possible that zoonotic diseases can be easily spread to the population by close contact with the infected animals, their infected residues, contaminated water, soil, or other possible means of transmission. In fact, zoonotic infections—transmissible infections between vertebrate animals and humans—cover a wide range of diseases with distinctive clinical and epidemiological highlights. With insufficient understanding and swift alteration in toxicity of the pathogens, these infections have gained more concerns due to sophisticated routes of transmission and harmful threats to humans. Recently emerging viral diseases exerted potential dangers to human beings, which required many countries to impose immediate actions to prevent any complications. Vietnam has recorded several cases of zoonotic diseases, especially pig-related illnesses; however, the studies on these diseases in this country remain limited. This work aims to highlight the zoonotic diseases transferring from pigs to humans and discuss risk factors of these diseases in Vietnam.

Keywords

Zoonotic diseases Zoonotic infections Emerging diseases Pig Vietnam 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval is not necessary; this is a review.

Informed consent

Informed consent is not necessary; this is a review.

References

  1. 1.
    Lemke U, Kaufmann B, Thuy LT, Emrich K, Zarate AV (2007) Evaluation of biological and economic efficiency of smallholder pig production systems in North Vietnam. Trop Anim Health Prod 39(4):237–254Google Scholar
  2. 2.
    Estrada-Pena A, Ostfeld RS, Peterson AT, Poulin R, de la Fuente J (2014) Effects of environmental change on zoonotic disease risk: an ecological primer. Trends Parasitol 30(4):205–214.  https://doi.org/10.1016/j.pt.2014.02.003 Google Scholar
  3. 3.
    Christou L (2011) The global burden of bacterial and viral zoonotic infections. Clin Microbiol Infect 17(3):326–330.  https://doi.org/10.1111/j.1469-0691.2010.03441.x Google Scholar
  4. 4.
    Weis AM, Storey DB, Taff CC, Townsend AK, Huang BC, Kong NT, Clothier KA, Spinner A, Byrne BA, Weimer BC (2016) Genomic comparison of Campylobacter spp. and their potential for zoonotic transmission between birds, primates, and livestock. Appl Environ Microbiol 82(24):7165–7175.  https://doi.org/10.1128/aem.01746-16 Google Scholar
  5. 5.
    Chomel BB, Jovme J (2003) Control and prevention of emerging zoonoses. J Vet Med Educ 30(2):145–147Google Scholar
  6. 6.
    Myers KP, Olsen CW, Gray GCJCID (2007) Cases of swine influenza in humans: a review of the literature. Clin Infect Dis 44(8):1084–1088Google Scholar
  7. 7.
    Sarma N (2017) Emerging and re-emerging infectious diseases in South East Asia. Indian J Dermatol 62(5):451–455.  https://doi.org/10.4103/ijd.IJD_389_17 Google Scholar
  8. 8.
    Lim BH, Mahmood TA (2011) Influenza A H1N1 2009 (swine flu) and pregnancy. J Obstet Gynaecol India 61(4):386–393.  https://doi.org/10.1007/s13224-011-0055-2 Google Scholar
  9. 9.
    Mishra N (2011) Emerging influenza A/H1N1: challenges and development, vol 2Google Scholar
  10. 10.
    Vincent A, Awada L, Brown I, Chen H, Claes F, Dauphin G, Donis R, Culhane M, Hamilton K, Lewis N, Mumford E, Nguyen T, Parchariyanon S, Pasick J, Pavade G, Pereda A, Peiris M, Saito T, Swenson S, Van Reeth K, Webby R, Wong F, Ciacci-Zanella J (2014) Review of influenza a virus in swine worldwide: a call for increased surveillance and research. Zoonoses Public Health 61(1):4–17.  https://doi.org/10.1111/zph.12049 Google Scholar
  11. 11.
    Coulibaly ND, Yameogo KR (2000) Prevalence and control of zoonotic diseases: collaboration between public health workers and veterinarians in Burkina Faso. Acta Trop 76(1):53–57Google Scholar
  12. 12.
    Holt HR, Inthavong P, Khamlome B, Blaszak K, Keokamphe C, Somoulay V, Phongmany A, Durr PA, Graham K, Allen J, Donnelly B, Blacksell SD, Unger F, Grace D, Alonso S, Gilbert J (2016) Endemicity of zoonotic diseases in pigs and humans in lowland and upland Lao PDR: identification of socio-cultural risk factors. PLoS Negl Trop Dis 10(4):e0003913.  https://doi.org/10.1371/journal.pntd.0003913 Google Scholar
  13. 13.
    Rabaa MA, Tue NT, Phuc TM, Carrique-Mas J, Saylors K, Cotten M, Bryant JE, Nghia HD, Cuong NV, Pham HA, Berto A, Phat VV, Dung TT, Bao LH, Hoa NT, Wertheim H, Nadjm B, Monagin C, van Doorn HR, Rahman M, Tra MP, Campbell JI, Boni MF, Tam PT, van der Hoek L, Simmonds P, Rambaut A, Toan TK, Van Vinh CN, Hien TT, Wolfe N, Farrar JJ, Thwaites G, Kellam P, Woolhouse ME, Baker S (2015) The Vietnam initiative on zoonotic infections (VIZIONS): a strategic approach to studying emerging zoonotic infectious diseases. EcoHealth 12(4):726–735.  https://doi.org/10.1007/s10393-015-1061-0 Google Scholar
  14. 14.
    Trang do T, Siembieda J, Huong NT, Hung P, Ky VD, Bandyopahyay S, Olowokure B (2015) Prioritization of zoonotic diseases of public health significance in Vietnam. J Infect Dev Ctries 9(12):1315–1322.  https://doi.org/10.3855/jidc.6582 Google Scholar
  15. 15.
    Mai NT, Hoa NT, Nga TV, Linh le D, Chau TT, Sinh DX, Phu NH, Chuong LV, Diep TS, Campbell J, Nghia HD, Minh TN, Chau NV, de Jong MD, Chinh NT, Hien TT, Farrar J, Schultsz C (2008) Streptococcus suis meningitis in adults in Vietnam. Clin Infect Dis 46(5):659–667.  https://doi.org/10.1086/527385 Google Scholar
  16. 16.
    Galwankar S, Clem A (2009) Swine influenza A (H1N1) strikes a potential for global disaster. J Emerg Trauma Shock 2(2):99–105.  https://doi.org/10.4103/0974-2700.50744 Google Scholar
  17. 17.
    Silasi M, Cardenas I, Kwon JY, Racicot K, Aldo P, Mor G (2015) Viral infections during pregnancy. Am J Reprod Immunol 73(3):199–213.  https://doi.org/10.1111/aji.12355 Google Scholar
  18. 18.
    Ma W, Kahn RE, Richt JA (2008) The pig as a mixing vessel for influenza viruses: human and veterinary implications. J Mol Genet Med 3(1):158–166Google Scholar
  19. 19.
    Skowronski DM, Hottes TS, Janjua NZ, Purych D, Sabaiduc S, Chan T, De Serres G, Gardy J, McElhaney JE, Patrick DM, Petric M (2010) Prevalence of seroprotection against the pandemic (H1N1) virus after the 2009 pandemic. CMAJ 182(17):1851–1856.  https://doi.org/10.1503/cmaj.100910 Google Scholar
  20. 20.
    Hien TT, Boni MF, Bryant JE, Ngan TT, Wolbers M, Nguyen TD, Truong NT, Dung NT, Ha do Q, Hien VM, Thanh TT, Nhu le NT, Uyen le TT, Nhien PT, Chinh NT, Chau NV, Farrar J, van Doorn HR (2010) Early pandemic influenza (2009 H1N1) in Ho Chi Minh City, Vietnam: a clinical virological and epidemiological analysis. PLoS Med 7(5):e1000277.  https://doi.org/10.1371/journal.pmed.1000277 Google Scholar
  21. 21.
    VnExpress (2018) Swine flu detected in HCMC’s largest hospital. https://e.vnexpress.net/news/news/swine-flu-detected-in-hcmc-s-largest-hospital-3767822.html
  22. 22.
    Grubman MJ, Baxt B (2004) Foot-and-mouth disease. Clin Microbiol Rev 17(2):465–493Google Scholar
  23. 23.
    Prempeh H, Smith R, Muller B (2001) Foot and mouth disease: the human consequences. The health consequences are slight, the economic ones huge. Bmj 322(7286):565–566Google Scholar
  24. 24.
    Mason PW, Grubman MJ (2009) Chapter 22 - foot-and-mouth disease. In: Barrett ADT, Stanberry LR (eds) Vaccines for biodefense and emerging and neglected diseases. Academic Press, London, pp 361–377.  https://doi.org/10.1016/B978-0-12-369408-9.00022-6 Google Scholar
  25. 25.
    Hyslop NS (1973) Transmission of the virus of foot and mouth disease between animals and man. Bull World Health Organ 49(6):577–585Google Scholar
  26. 26.
    Bertram MR, Vu LT, Pauszek SJ, Brito BP, Hartwig EJ, Smoliga GR, Hoang BH, Phuong NT, Stenfeldt C, Fish IH, Hung VV, Delgado A, VanderWaal K, Rodriguez LL, Long NT, Dung DH, Arzt J (2018) Lack of transmission of foot-and-mouth disease virus from persistently infected cattle to naïve cattle under field conditions in Vietnam. Front Vet Sci 5:174.  https://doi.org/10.3389/fvets.2018.00174 Google Scholar
  27. 27.
    Vu LT, Long NT, Brito B, Stenfeldt C, Phuong NT, Hoang BH, Pauszek SJ, Hartwig EJ, Smoliga GR, Vu PP, Quang LTV, Hung VV, Tho ND, Dong PV, Minh PQ, Bertram M, Fish IH, Rodriguez LL, Dung DH, Arzt J (2017) First detection of foot-and-mouth disease virus O/Ind-2001d in Vietnam. PLoS One 12(6):e0177361.  https://doi.org/10.1371/journal.pone.0177361 Google Scholar
  28. 28.
    Feng Y, Zhang H, Wu Z, Wang S, Cao M, Hu D, Wang C (2014) Streptococcus suis infection: an emerging/reemerging challenge of bacterial infectious diseases? Virulence 5(4):477–497.  https://doi.org/10.4161/viru.28595 Google Scholar
  29. 29.
    Yu H, Jing H, Chen Z, Zheng H, Zhu X, Wang H, Wang S, Liu L, Zu R, Luo L, Xiang N, Liu H, Liu X, Shu Y, Lee SS, Chuang SK, Wang Y, Xu J, Yang W (2006) Human Streptococcus suis outbreak, Sichuan, China. Emerg Infect Dis 12(6):914–920Google Scholar
  30. 30.
    Wertheim HF, Nghia HD, Taylor W, Schultsz C (2009) Streptococcus suis: an emerging human pathogen. Clin Infect Dis 48(5):617–625.  https://doi.org/10.1086/596763 Google Scholar
  31. 31.
    Goyette-Desjardins G, Auger JP, Xu J, Segura M, Gottschalk M (2014) Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg Microbes Infect 3(6):e45.  https://doi.org/10.1038/emi.2014.45 Google Scholar
  32. 32.
    Ho Dang Trung N, Le Thi PT, Wolbers M, Nguyen Van Minh H, Nguyen Thanh V, Van MP, Thieu NT, Van TL, Song DT, Thi PL, Thi Phuong TN, Van CB, Tang V, Ngoc Anh TH, Nguyen D, Trung TP, Thi Nam LN, Kiem HT, Thi Thanh TN, Campbell J, Caws M, Day J, de Jong MD, Van Vinh CN, Van Doorn HR, Tinh HT, Farrar J, Schultsz C (2012) Aetiologies of central nervous system infection in Viet Nam: a prospective provincial hospital-based descriptive surveillance study. PLoS One 7(5):e37825.  https://doi.org/10.1371/journal.pone.0037825 Google Scholar
  33. 33.
    Nghia HD, Tule TP, Wolbers M, Thai CQ, Hoang NV, Nga TV, le TP T, Phu NH, Chau TT, Sinh DX, Diep TS, Hang HT, Truong H, Campbell J, Chau NV, Chinh NT, Dung NV, Hoa NT, Spratt BG, Hien TT, Farrar J, Schultsz C (2011) Risk factors of Streptococcus suis infection in Vietnam. A case-control study. PLoS One 6(3):e17604.  https://doi.org/10.1371/journal.pone.0017604 Google Scholar
  34. 34.
    Berger SA (2013) Anthrax: Global Status. Gideon Informatics, 299 pagesGoogle Scholar
  35. 35.
    Doganay M, Demiraslan H (2015) Human anthrax as a re-emerging disease. Recent Pat Antiinfect Drug Discov 10(1):10–29Google Scholar
  36. 36.
    Li Y, Yin W, Hugh-Jones M, Wang L, Mu D, Ren X, Zeng L, Chen Q, Li W, Wei J, Lai S, Zhou H, Yu H (2017) Epidemiology of human anthrax in China, 1955-2014. Emerg Infect Dis 23(1):14–21.  https://doi.org/10.3201/eid2301.150947 Google Scholar
  37. 37.
    World Health Organization (2008) Tuberculosis (TB). http://www.who.int/tb/en/. Accessed 8 June 2018
  38. 38.
    Braun P, Grass G, Aceti A, Serrecchia L, Affuso A, Marino L, Grimaldi S, Pagano S, Hanczaruk M, Georgi E, Northoff B, Scholer A, Schloter M, Antwerpen M, Fasanella A (2015) Microevolution of anthrax from a young ancestor (M.A.Y.A.) suggests a soil-borne life cycle of bacillus anthracis. PLoS One 10(8):e0135346.  https://doi.org/10.1371/journal.pone.0135346 Google Scholar
  39. 39.
    del Rio-Chiriboga C, Franco-Paredes C (2001) Bioterrorism: a new problem of public health. Salud Publica Mex 43(6):585–588Google Scholar
  40. 40.
    Wallin A, Luksiene Z, Zagminas K, Surkiene G (2007) Public health and bioterrorism: renewed threat of anthrax and smallpox. Medicina (Kaunas) 43(4):278–284Google Scholar
  41. 41.
    Herriman (2017) Vietnam issues hand, foot and mouth disease warning - outbreak news today. http://outbreaknewstoday.com/vietnam-issues-hand-foot-mouth-disease-warning-76944/
  42. 42.
    Borgdorff MW, van Soolingen D (2013) The re-emergence of tuberculosis: what have we learnt from molecular epidemiology? Clin Microbiol Infect 19(10):889–901.  https://doi.org/10.1111/1469-0691.12253 Google Scholar
  43. 43.
    Thị N, Nguyen VA, Đức Đ (2017) Phân bố dòng vi khuẩn mycobacterium Tuberculosis theo mức độ kháng thuốc ở Việt Nam. Tạp chí Y họ c dự phòng 27:138–145Google Scholar
  44. 44.
    Buddle BM, Wilson T, Luo D, Voges H, Linscott R, Martel E, Lawrence JC, Neill MA (2013) Evaluation of a commercial enzyme-linked immunosorbent assay for the diagnosis of bovine tuberculosis from milk samples from dairy cows. Clin Vaccine Immunol 20(12):1812–1816.  https://doi.org/10.1128/cvi.00538-13 Google Scholar
  45. 45.
    van Zyl L, du Plessis J, Viljoen J (2015) Cutaneous tuberculosis overview and current treatment regimens. Tuberculosis (Edinb) 95(6):629–638.  https://doi.org/10.1016/j.tube.2014.12.006 Google Scholar
  46. 46.
    Jia Z, Cheng S, Ma Y, Zhang T, Bai L, Xu W, He X, Zhang P, Zhao J, Christiani DC (2014) Tuberculosis burden in China: a high prevalence of pulmonary tuberculosis in household contacts with and without symptoms. BMC Infect Dis 14:64.  https://doi.org/10.1186/1471-2334-14-64 Google Scholar
  47. 47.
    Tatar D, Senol G, Alptekin S, Gunes E, Aydin M, Gunes O (2016) Assessment of extrapulmonary tuberculosis in two provinces of Turkey. Iran J Public Health 45(3):305Google Scholar
  48. 48.
    Colbert G, Richey D, Schwartz JC (2012) Widespread tuberculosis including renal involvement. Proc (Baylor Univ Med Cent) 25(3):236–239Google Scholar
  49. 49.
    Daniel TM (2006) The history of tuberculosis. Respir Med 100(11):1862–1870.  https://doi.org/10.1016/j.rmed.2006.08.006 Google Scholar
  50. 50.
    World Health Organization (2018). Tuberculosis (TB). https://www.who.int/tb/en/. Accessed 06/08/2018
  51. 51.
    Xinhua (2017) Vietnam detects over 100,000 tuberculosis patients annually - Xinhua | English.news.cn. http://www.xinhuanet.com/english/2017-12/13/c_136822637.htm
  52. 52.
    Moitra S, Sen S, Mukherjee S, Das P, Sinha S, Bose M (2015) Study of prevalence and outcome of standardized treatment on category I pulmonary tuberculosis cases in North India: a single center experience. 2(3):83–92. doi: https://doi.org/10.4103/2225-6482.166073
  53. 53.
    Hoang TTT, Nguyen NV, Dinh SN, Nguyen HB, Cobelens F, Thwaites G, Nguyen HT, Nguyen AT, Wright P, Wertheim HFL (2015) Challenges in detection and treatment of multidrug resistant tuberculosis patients in Vietnam. BMC Public Health 15(1):980.  https://doi.org/10.1186/s12889-015-2338-5 Google Scholar
  54. 54.
    Kaakoush NO, Castano-Rodriguez N, Mitchell HM, Man SM (2015) Global epidemiology of campylobacter infection. Clin Microbiol Rev 28(3):687–720.  https://doi.org/10.1128/cmr.00006-15 Google Scholar
  55. 55.
    Luu QH, Tran TH, Phung DC, Nguyen TB (2006) Study on the prevalence of campylobacter spp. from chicken meat in Hanoi, Vietnam. Ann N Y Acad Sci 1081:273–275.  https://doi.org/10.1196/annals.1373.036 Google Scholar
  56. 56.
    Ternhag A, Asikainen T, Giesecke J, Ekdahl KJCID (2007) A meta-analysis on the effects of antibiotic treatment on duration of symptoms caused by infection with Campylobacter species. Clin Infect Dis 44(5):696–700Google Scholar
  57. 57.
    Altekruse SF, Stern NJ, Fields PI, Swerdlow DL (1999) Campylobacter jejuni—an emerging foodborne pathogen. Emerg Infect Dis 5(1):28Google Scholar
  58. 58.
    Zhen Q, Lu Y, Yuan X, Qiu Y, Xu J, Li W, Ke Y, Yu Y, Huang L, Wang Y, Chen Z (2013) Asymptomatic brucellosis infection in humans: implications for diagnosis and prevention. Clin Microbiol Infect 19(9):E395–E397.  https://doi.org/10.1111/1469-0691.12250 Google Scholar
  59. 59.
    Ficht T (2010) Brucella taxonomy and evolution. Future Microbiol 5(6):859–866.  https://doi.org/10.2217/fmb.10.52 Google Scholar
  60. 60.
    Department for Environment, Food and Rural Affairs (2014) Brucellosis: how to spot and report the disease. Animal and Plant Health AgencyGoogle Scholar
  61. 61.
    Doganay M (2013) Human Brucellosis: Importance of Brucellosis. Recent patents on anti-infective drug discovery. 8(1):2–3Google Scholar
  62. 62.
    Al-Tawfiq JA, Memish ZA (2013) Antibiotic susceptibility and treatment of brucellosis. Recent patents on anti-infective drug discovery 8(1):51–54Google Scholar
  63. 63.
    Campbell JI, Lan NPH, Phuong PM, Chau LB, Trung Pham D, Guzman-Verri C, Ruiz-Villalobos N, Minh TPT, Munoz Alvaro PM, Moreno E, Thwaites GE, Rabaa MA, Chau NVV, Baker S (2017) Human Brucella melitensis infections in southern Vietnam. Clin Microbiol Infect 23(11):788–790.  https://doi.org/10.1016/j.cmi.2017.06.028 Google Scholar
  64. 64.
    Haake DA, Levett PN (2015) Leptospirosis in humans. Curr Top Microbiol Immunol 387:65–97.  https://doi.org/10.1007/978-3-662-45059-8_5 Google Scholar
  65. 65.
    Ullmann L, Langoni H (2011) Interactions between environment, wild animals and human leptospirosis. J Venomous Anim Toxins Incl Trop Dis 17:119–129Google Scholar
  66. 66.
    Goarant C (2016) Leptospirosis: risk factors and management challenges in developing countries. Research and reports in tropical medicine 7:49–62.  https://doi.org/10.2147/rrtm.S102543 Google Scholar
  67. 67.
    Maas M, De Vries A, Reusken C, Buijs J, Goris M, Hartskeerl R, Ahmed A, Van Tulden P, Swart A, Pijnacker R, Koene M, Lundkvist A, Heyman P, Rockx B, Van Der Giessen J (2018) Prevalence of Leptospira spp. and Seoul hantavirus in brown rats (Rattus norvegicus) in four regions in the Netherlands, 2011-2015. Infect Ecol Epidemiol 8(1):1490135.  https://doi.org/10.1080/20008686.2018.1490135 Google Scholar
  68. 68.
    Kamath R, Swain S, Pattanshetty S, Nair NS (2014) Studying risk factors associated with human leptospirosis. J Global Infect Dis 6(1):3–9.  https://doi.org/10.4103/0974-777x.127941 Google Scholar
  69. 69.
    Levett PN (2001) Leptospirosis. J Clin Microbiol Rev 14(2):296–326.  https://doi.org/10.1128/CMR.14.2.296-326.2001%
  70. 70.
    Ahmed N, Devi SM, Valverde Mde L, Vijayachari P, Machang’u RS, Ellis WA, Hartskeerl RA (2006) Multilocus sequence typing method for identification and genotypic classification of pathogenic Leptospira species. Ann Clin Microbiol Antimicrob 5:28.  https://doi.org/10.1186/1476-0711-5-28 Google Scholar
  71. 71.
    Loan HK, Van Cuong N, Takhampunya R, Kiet BT, Campbell J, Them LN, Bryant JE, Tippayachai B, Van Hoang N, Morand S, Hien VB, Carrique-Mas JJ (2015) How important are rats as vectors of leptospirosis in the Mekong Delta of Vietnam? Vector Borne Zoonotic Dis 15(1):56–64.  https://doi.org/10.1089/vbz.2014.1613 Google Scholar
  72. 72.
    Berman SJ, Irving GS, Kundin WD, Gunning JJ, Watten RH (1973) Epidemiology of the acute fevers of unknown origin in South Vietnam: effect of laboratory support upon clinical diagnosis. Am J Trop Med Hyg 22(6):796–801Google Scholar
  73. 73.
    Le Thi Thanh Xuan, Nguyen Thi Binh Ngoc, Hoang Thi Thu Ha, Tai LT (2015) Some epidemiological characteristics of Leptospirosis in Vietnam during the period from 2002 to 2011. The Vietnam J Pre Med 166:358–362Google Scholar
  74. 74.
    Pozio E (2007) World distribution of Trichinella spp. infections in animals and humans. Vet Parasitol 149(1–2):3–21.  https://doi.org/10.1016/j.vetpar.2007.07.002 Google Scholar
  75. 75.
    Murrell KD, Pozio E (2011) Worldwide occurrence and impact of human trichinellosis, 1986-2009. Emerg Infect Dis 17(12):2194–2202.  https://doi.org/10.3201/eid1712.110896 Google Scholar
  76. 76.
    Dupouy-Camet J, Kociecka W, Bruschi F, Bolas-Fernandez F, Pozio E (2002) Opinion on the diagnosis and treatment of human trichinellosis. Expert Opin Pharmacother 3(8):1117–1130.  https://doi.org/10.1517/14656566.3.8.1117 Google Scholar
  77. 77.
    Odermatt P, Lv S, Sayasone S (2010) Less common parasitic infections in Southeast Asia that can produce outbreaks. Adv Parasitol 72:409–435.  https://doi.org/10.1016/s0065-308x(10)72013-3 Google Scholar
  78. 78.
    Pozio E, Hoberg E, La Rosa G, Zarlenga DS (2009) Molecular taxonomy, phylogeny and biogeography of nematodes belonging to the Trichinella genus. Infect Genet Evol 9(4):606–616.  https://doi.org/10.1016/j.meegid.2009.03.003 Google Scholar
  79. 79.
    Barennes H, Sayasone S, Odermatt P, De Bruyne A, Hongsakhone S, Newton PN, Vongphrachanh P, Martinez-Aussel B, Strobel M, Dupouy-Camet JJT (2008) A major trichinellosis outbreak suggesting a high endemicity of Trichinella infection in northern Laos. Am J Trop Med Hyg 78(1):40–44Google Scholar
  80. 80.
    Van De N, Thi Nga V, Dorny P, Vu Trung N, Ngoc Minh P, Trung Dung D, Pozio E (2015) Trichinellosis in Vietnam. Am J Trop Med Hyg 92(6):1265–1270.  https://doi.org/10.4269/ajtmh.14-0570 Google Scholar
  81. 81.
    Blanc F, Collomb H, Armengaud M (1956) Study of six cases of trichinosis. Bull Mem Soc Med Hop Paris 57(4):201–261Google Scholar
  82. 82.
    Del Brutto OH, Garcia HH (2015) Taenia solium Cysticercosis--the lessons of history. J Neurol Sci 359(1–2):392–395.  https://doi.org/10.1016/j.jns.2015.08.011 Google Scholar
  83. 83.
    Dung VT (2014) Bệnh sán dải heo (Taenia solium và taenia asiatica hay Taenia solium và pork tapeworm). http://www.impehcm.org.vn/noi-dung/kham-benh-giun-san/benh-san-dai-heo-taenia-solium-va-taenia-asiatica-hay-taenia-solium-va-pork-tapeworm.html
  84. 84.
    Ng-Nguyen D, Stevenson MA, Traub RJ (2017) A systematic review of taeniasis, cysticercosis and trichinellosis in Vietnam. Parasit Vectors 10(1):150.  https://doi.org/10.1186/s13071-017-2085-9 Google Scholar
  85. 85.
    O’Neal SE, Moyano LM, Ayvar V, Rodriguez S, Gavidia C, Wilkins PP, Gilman RH, Garcia HH, Gonzalez AE (2014) Ring-screening to control endemic transmission of Taenia solium. PLoS Negl Trop Dis 8(9):e3125.  https://doi.org/10.1371/journal.pntd.0003125 Google Scholar
  86. 86.
    Van De N, Le TH, Lien PT, Eom KS (2014) Current status of taeniasis and cysticercosis in Vietnam. Korean J Parasitol 52(2):125–129.  https://doi.org/10.3347/kjp.2014.52.2.125 Google Scholar
  87. 87.
    Shah J, Shahidullah A (2018) Ascaris lumbricoides: a startling discovery during screening colonoscopy. Case Rep Gastroenterol 12(2):224–229Google Scholar
  88. 88.
    Leles D, Gardner SL, Reinhard K, Iñiguez A, Araujo AJP (2012) Are Ascaris lumbricoides and Ascaris suum a single species? Vectors 5(1):42Google Scholar
  89. 89.
    Institut Pasteur in Ho Chi Minh (2014) City Các bệnh do giun đũa/Ascaridosis. http://www.pasteurhcm.gov.vn/news/cac-benh-do-giun-dua-111.html. Accessed 10/08/2018
  90. 90.
    Centers for Disease Control and Prevention (2018) Ascariasis. https://www.cdc.gov/parasites/ascariasis/index.html. Accessed 10/08/2018
  91. 91.
    Yoshida A, Hombu A, Wang Z, Maruyama H (2016) Larva migrans syndrome caused by Toxocara and Ascaris roundworm infections in Japanese patients. Eur J Clin Microbiol Infect Dis 35(9):1521–1529.  https://doi.org/10.1007/s10096-016-2693-x Google Scholar
  92. 92.
    van Soelen N, Mandalakas AM, Kirchner HL, Walzl G, Grewal HM, Jacobsen M, Hesseling AC (2012) Effect of Ascaris lumbricoides specific IgE on tuberculin skin test responses in children in a high-burden setting: a cross-sectional community-based study. BMC Infect Dis 12:211.  https://doi.org/10.1186/1471-2334-12-211 Google Scholar
  93. 93.
    van der Hoek W, De NV, Konradsen F, Cam PD, Hoa NT, Toan ND, Cong le D (2003) Current status of soil-transmitted helminths in Vietnam. Southeast Asian J Trop Med Public Health 34(Suppl 1):1–11Google Scholar
  94. 94.
    Organization WH (2015) World Health Organization, Food Safety: What you should knowGoogle Scholar
  95. 95.
    Murphy FA (1999) The threat posed by the global emergence of livestock, food-borne, and zoonotic pathogens. Ann N Y Acad Sci 894:20–27Google Scholar
  96. 96.
    McCarthy J, Moore TA (2000) Emerging helminth zoonoses. Int J Parasitol 30(12–13):1351–1360Google Scholar
  97. 97.
    Slifko TR, Smith HV, Rose JB (2000) Emerging parasite zoonoses associated with water and food. Int J Parasitol 30(12–13):1379–1393Google Scholar
  98. 98.
    Wikipedia (2018) Tiết canh- Raw blood pudding. https://en.wikipedia.org/wiki/Ti%E1%BA%BFt_canh. Accessed 15/08/2018
  99. 99.
    Huong VTL (2014) Raw pig blood consumption and potential risk for Streptococcus suis infection, Vietnam - Volume 20, Number 11—November 2014 - Emerging Infectious Diseases journal - CDC. 20Google Scholar
  100. 100.
    VAPM (2016) Epidemiological characteristics of Streptococcus suis disease in Hanoi city in 2015 (In Vietnamese: Một số đặc điểm dịch tễ học bệnh liên cầu lợn tại Hà Nội, 2015). http://www.tapchiyhocduphong.vn/tap-chi-y-hoc-du-phong/2016/15/81E204F5/mot-so-dac-diem-dich-te-hoc-benh-lien-cau-lon-tai-ha-noi-2015/
  101. 101.
    News TN (2014) Swine bacteria kills man in northern Vietnam. http://www.thanhniennews.com/health/swine-bacteria-kills-man-in-northern-vietnam-23965.html
  102. 102.
    Naicker PR (2011) The impact of climate change and other factors on zoonotic diseases. Archives of Clinical Microbiology 2. http://www.acmicrob.com/microbiology/the-impact-of-climate-change-and-otherfactors-on-zoonotic-diseases.php?aid=220. Accessed 16/08/2018
  103. 103.
    Mills LC (2018) Characterizing environmental factors influencing zoonotic disease reservoirs using meta-parasite prevalenceGoogle Scholar
  104. 104.
    Cardenas R, Sandoval CM, Rodriguez-Morales AJ, Vivas P (2008) Zoonoses and climate variability. Ann N Y Acad Sci 1149:326–330.  https://doi.org/10.1196/annals.1428.094 Google Scholar
  105. 105.
    Zinsstag J, Crump L, Schelling E, Hattendorf J, Maidane YO, Ali KO, Muhummed A, Umer AA, Aliyi F, Nooh F, Abdikadir MI, Ali SM, Hartinger S, Mausezahl D, de White MBG, Cordon-Rosales C, Castillo DA, McCracken J, Abakar F, Cercamondi C, Emmenegger S, Maier E, Karanja S, Bolon I, de Castaneda RR, Bonfoh B, Tschopp R, Probst-Hensch N, Cisse G (2018) Climate change and one health. FEMS Microbiol Lett 365(11).  https://doi.org/10.1093/femsle/fny085
  106. 106.
    Caminade C, McIntyre KM, Jones AE (2018) Impact of recent and future climate change on vector-borne diseases. Ann N Y Acad Sci.  https://doi.org/10.1111/nyas.13950
  107. 107.
    Wu X, Lu Y, Zhou S, Chen L, Xu B (2016) Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ Int 86:14–23.  https://doi.org/10.1016/j.envint.2015.09.007 Google Scholar
  108. 108.
    Food safety (2017) Scientists warn about Vietnam pig's blood delicacy.. https://foodsafety.suencs.com/?p=46672. Accessed 15/08/2018
  109. 109.
    Akinade AJ (2015) Zoonotic diseases prevention and control: the role of awareness and educational programmes (thesis)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of BiologyHanoi National University of EducationHanoiVietnam
  2. 2.Faculty of Veterinary MedicineNong Lam UniversityHo Chi MinhVietnam
  3. 3.Institute for Research and DevelopmentDuy Tan UniversityDanangVietnam
  4. 4.School of Odonto Stomatology, Hanoi Medical UniversityHanoiVietnam
  5. 5.Department of Science and TechnologyHanoi Medical UniversityHanoiVietnam
  6. 6.AI Lab, Faculty of Information Technology, Ton Duc Thang UniversityHo Chi Minh CityVietnam
  7. 7.Faculty of Veterinary MedicineVietnam National University of ForestryHanoiVietnam
  8. 8.Faculty of Veterinary MedicineVietnam National University of AgricultureHanoiVietnam

Personalised recommendations