, 56:25 | Cite as

Semi-implicit Milstein approximation scheme for non-colliding particle systems

  • Duc-Trong Luong
  • Hoang-Long NgoEmail author


We introduce a semi-implicit Milstein approximation scheme for some classes of non-colliding particle systems modeled by systems of stochastic differential equations with non-constant diffusion coefficients. We show that the scheme converges at the rate of order 1 in the mean-square sense.


Dyson Brownian motion Milstein scheme Particle system Stochastic differential equation Strong approximation 

Mathematics Subject Classification

65C30 60H35 60K35 



  1. 1.
    Bru, M.-F.: Diffusions of perturbed principal component analysis. J. Multivar. Anal. 29(1), 127–136 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bru, M.-F.: Wishart processes. J. Theor. Probab. 4(4), 725–751 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cépa, E., Lépingle, D.: Diffusing particles with electrostatic repulsion. Probab. Theory Relat. Fields 107(4), 429–449 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3(6), 1191–1198 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Fischer, M., Nappo, G.: On the moments of the modulus of continuity of Itô processes. Stoch. Anal. Appl. 28(1), 103–122 (2009)zbMATHCrossRefGoogle Scholar
  6. 6.
    Graczyk, P., Małecki, J.: Strong solutions of non-colliding particle systems. Electron. J. Probab. 19(119), 1–21 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gyöngy, I.: A note on Euler’s approximations. Potential Anal. 8(3), 205–216 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gyöngy, I., Krylov, N.V.: On the rate of convergence of splitting-up approximations for SPDEs. In: Giné, E., Houdré, C., Nualart, D. (eds.) Stochastic Inequalities and Applications, pp. 301–321. Birkhäuser, Basel (2003)zbMATHCrossRefGoogle Scholar
  9. 9.
    Jentzen, A., Kloeden, P.E., Neuenkirch, A.: Pathwise approximation of stochastic differential equations on domains: higher order convergence rates without global Lipschitz coefficients. Numer. Math. 112(1), 41–64 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Katori, M., Tanemura, H.: Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems. J. Math. Phys. 45(8), 3058–3085 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1995)zbMATHGoogle Scholar
  12. 12.
    Lépingle, D.: Boundary behavior of a constrained Brownian motion between reflecting-repellent walls. Probab. Math. Stat. 30(2), 273–287 (2010)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Li, X.H., Menon, G.: Numerical solution of Dyson Brownian motion and a sampling scheme for invariant matrix ensembles. J. Stat. Phys. 153(5), 801–812 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Naganuma, N., Taguchi D.: Malliavin calculus for non-colliding particle systems (2018). arXiv preprint arXiv:1803.04136
  15. 15.
    Ngo, H-L., Taguchi, D.: Semi-implicit Euler Maruyama approximation for non-collliding particle systems (2017). arXiv preprint arXiv:1706.10119
  16. 16.
    Ramanan, K., Shkolnikov, M.: Intertwinings of beta-Dyson Brownian motions of different dimensions. Ann. Inst. H. Poincaré Probab. Stat. 54(2), 1152–1163 (2018). (to appear) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Rogers, L.C.G., Shi, Z.: Interacting Brownian particles and the Wigner law. Probab. Theory Relat. Fields 95(4), 555–570 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Rost, H., Vares, M.E.: Hydrodynamics of a one-dimensional nearest neighbor model, particle systems, random media and large deviations. Contemp. Math. 41, 329–342 (1985)CrossRefGoogle Scholar

Copyright information

© Istituto di Informatica e Telematica (IIT) 2019

Authors and Affiliations

  1. 1.Hanoi National University of EducationCau Giay, HanoiVietnam

Personalised recommendations