, 55:52 | Cite as

An inertial type iterative method with Armijo linesearch for nonmonotone equilibrium problems

  • Olaniyi. S. IyiolaEmail author
  • Ferdinard U. Ogbuisi
  • Yekini Shehu


This paper studies an iterative method with inertial term extrapolation step for solving an equilibrium problem of nonmonotone bifunctions in real Hilbert spaces. The inertia term extrapolation step is introduced to speed up the rate of convergence of the iteration process. We obtain convergence result under some continuity and convexity assumptions on the bifunction and the condition that the solution set of the associated Minty equilibrium problem is nonempty. Numerical comparisons of our proposed method with some other related method in the literature are given.


Armijo linesearch Nonmonotone equilibrium problems Bifunctions Inertia term 

Mathematics Subject Classification

47H04 54H25 47H10 


  1. 1.
    Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14(3), 773–782 (2003)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 9(1–2), 3–11 (2001)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Attouch, H., Goudon, X., Redont, P.: The heavy ball with friction. I. The continuous dynamical system. Commun. Contemp. Math. 2(1), 1–34 (2000)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Attouch, H., Czarnecki, M.O.: Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria. J. Differ. Equ. 179(1), 278–310 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Attouch, H., Peypouquet, J., Redont, P.: A dynamical approach to an inertial forward–backward algorithm for convex minimization. SIAM J. Optim. 24(1), 232–256 (2014)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Beck, A., Teboulle, M.: A fast iterative shrinkage–thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bigi, G., Pappalardo, M., Passacantando, M.: Existence and solution methods for equilibria. Eur. J. Oper. Res. 227(1), 1–11 (2013)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bigi, G., Passacantando, M.: Gap functions for quasi-equilibria. J. Global Optim. 66(4), 791–810 (2016)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63(1–4), 123–145 (1994)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bot, R.I., Csetnek, E.R., Hendrich, C.: Inertial Douglas–Rachford splitting for monotone inclusion. Appl. Math. Comput. 256, 472–487 (2015)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bot, R.I., Csetnek, E.R.: An inertial alternating direction method of multipliers. Minimax Theory Appl. 1(1), 29–49 (2016)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bot, R.I., Csetnek, E.R.: An inertial forward–backward–forward primal–dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithms 71(3), 519–540 (2016)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics, Springer, New York (2011)zbMATHGoogle Scholar
  14. 14.
    Castellani, M., Giuli, M.: Refinements of existence results for relaxed quasimonotone equilibrium problems. J. Global Optim. 57(4), 1213–1227 (2013)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Chen, C., Chan, R.H., Ma, S., Yang, J.: Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 8(4), 2239–2267 (2015)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Contreras, J., Klusch, M., Krawczyk, J.B.: Numerical solution to Nash–Cournot equilibria in coupled constraint electricity markets. IEEE Trans. Power Syst. 19, 195–206 (2004)Google Scholar
  17. 17.
    Daniele, P., Giannessi, F., Maugeri, A. (eds.): Equilibrium Problems and Variational Models, Nonconvex Optimization and its Application, vol. 68. Kluwer, Norwell (2003)Google Scholar
  18. 18.
    Dinh, B.V., Kim, D.S.: Projection algorithms for solving nonmonotone equilibrium problems in Hilbert space. J. Comput. Appl. Math. 302, 106–117 (2016)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementary Problems. Springer, NewYork (2003)zbMATHGoogle Scholar
  20. 20.
    Giannessi, F.: On Minty variational principle. In: Giannessi, F., Komlósi, S., Rapcsá, T. (eds.) New Trends in Mathematical Programming, pp. 93–99. Kluwer, Dordreccht (1998)Google Scholar
  21. 21.
    Giannessi, F., Maugeri, A., Pardalos, P.M. (eds.): Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Kluwer, Dordrecht (2001)zbMATHGoogle Scholar
  22. 22.
    Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)zbMATHGoogle Scholar
  23. 23.
    He, Y.R.: A new double projection algorithm for variational inequalities. J. Comput. Appl. Math. 185(1), 166–173 (2006)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Iusem, A.N., Sosa, W.: Iterative algorithms for equilibrium problems. Optimization 52(3), 301–316 (2003)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Iusem, A.N., Sosa, W.: On the proximal point method for equilibrium problem in Hilbert spaces. Optimization 59(8), 1259–1274 (2010)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Jaiboon, C., Kumam, P., Humphries, U.W.: Weak convergence theorem for an extragradient method for variational inequality, equilibrium and fixed point problems. Bull. Malays. Math. Sci. Soc. 32(2)(2), 173–185 (2009)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Jaiboon, C., Kumam, P.: A hybrid extragradient viscosity approximation method for solving equilibrium problems and fixed point problems of infinitely many nonexpansive mappings. Fixed Point Theory Appl., Art. ID 374815 (2009)Google Scholar
  28. 28.
    Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21(4), 1319–1344 (2011)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Konnov, I.V.: Equilibrium Models and Variational Inequalities. Elsevier, Amsterdam (2007)zbMATHGoogle Scholar
  30. 30.
    Korpelevich, G.M.: Extragradient method for finding saddle points and other problems. Ékonom. i Mat. Metody 12(4), 747–756 (1976)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Kumam, P., Katchang, P.: A viscosity of extragradient approximation method for finding equilibrium problems and fixed point problems for nonexpansive mappings. Nonlinear Anal. Hybrid Syst. 3(4), 475–486 (2009)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Kumam, W., Kumam, P.: Hybrid iterative scheme by relaxed extragradient method for solutions of equilibrium problems and a general system of variational inequalities with application to optimization. Nonlinear Anal. Hybrid Syst. 3(4), 640–656 (2009)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Lorenz, D.A., Pock, T.: An inertial forward–backward algorithm for monotone inclusions. J. Math. Imaging Vis. 51(2), 311–325 (2015)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Maingé, P.E.: Convergence theorem for inertial KM-type algorithms. J. Comput. Appl. Math. 219(1), 223–236 (2008)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Maingé, P.E.: Regularized and inertial algorithms for common fixed points of nonlinear operators. J. Math. Anal. Appl. 344(2), 876–887 (2008)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Mastroeni, G.: Gap functions for equilibrium problems. J. Global Optim. 27(4), 411–426 (2003)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Mastroeni, G.: On auxiliary principle for equilibrium problems. In: Daniele, P., Giannessi, F., Maugeri, A. (eds.) Equilibrium Problems and Variational Models, pp. 289–298. Kluwer, Dordrecht (2003)zbMATHGoogle Scholar
  38. 38.
    Minty, G.J.: On the generalization of a direct method of calculus of variations. Bull. Am. Math. Soc. 73, 315–321 (1967)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Moudafi, A.: Proximal point algorithm extended to equilibrium problems. J. Nat. Geom. 15(1–2), 91–100 (1999)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Moudafi, A.: On the convergence of splitting proximal methods for equilibrium problems in Hilbert spaces. J. Math. Anal. Appl. 359(2), 508–513 (2009)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Muu, L.D.: Stability property of a class of variational inequalities. Math. Operationsforsch. Stat. Ser. Optim 15(3), 347–353 (1984)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18(12), 1159–1166 (1992)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Muu, L.D., Quoc, T.D.: Regularization algorithms for solving monotone Ky Fan inequalities with application to a Nash–Cournot equilibrium model. J. Optim. Theory Appl. 142(1), 185–204 (2009)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Nguyen, V.H.: Lecture Notes on Equilibrium Problems. CIUF-CUD Summer School on Optimization and Applied Mathematics, Nha Trang (2002)Google Scholar
  45. 45.
    Noor, M.A.: Extragradient methods for pseudomonotone variational inequalities. J. Optim. Theory Appl. 117(3), 475–488 (2003)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Ochs, P., Brox, T., Pock, T.: iPiasco: inertial proximal algorithm for strongly convex optimization. J. Math. Imaging Vis. 53(2), 171–181 (2015)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Polyak, B.T.: Some methods of speeding up the convergence of iterative methods. Zh. Vychisl. Mat. Mat. Fiz. 4, 791–803 (1964)MathSciNetGoogle Scholar
  48. 48.
    Quoc, T.D., Muu, L.D.: Iterative methods for solving monotone equilibrium problems via dual gap functions. Comput. Optim. Appl. 51(2), 708–728 (2012)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Quoc, T.D., Anh, P.N., Muu, L.D.: Dual extragradient algorithms extended to equilibrium problems. J. Global Optim. 52(1), 139–159 (2012)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Quoc, T.D., Muu, L.D., Nguyen, H.V.: Extragradient algorithms extended to equilibrium problems. Optimization 57(6), 749–776 (2008)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Riech, S., Sabach, S.: Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces. Comtemp. Math. 568, 225–240 (2012)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Scheimberg, S., Santos, P.S.M.: A relaxed projection method for finite dimensional equilibrium problems. Optimization 60(8–9), 1193–1208 (2011)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Shehu, Y.: Iterative method for fixed point problem, variational inequality and generalized mixed equilibrium problems with applications. J. Global Optim. 52(1), 57–77 (2012)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Shehu, Y.: Strong convergence theorem for nonexpansive semigroups and systems of equilibrium problems. J. Global Optim. 56(4), 1675–1688 (2013)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Stos̆ić, M., Xavier, J., Dodig, M.: Projection on the intersection of convex sets. Linear Algebra Appl. 09, 191–205 (2016)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Strodiot, J.J., Nguyen, T.T.V., Nguyen, V.H.: A new class of hybrid extragradient algorithms for solving quasi-equilibrium problems. J. Global Optim. 56(2), 373–397 (2013)MathSciNetzbMATHGoogle Scholar
  57. 57.
    Van, N.T.T., Strodiot, J.J., Nguyen, V.H.: The interior proximal extragradient method for solving equilibrium problems. J. Global Optim. 44(2), 175–192 (2009)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Van, N.T.T., Strodiot, J.J., Nguyen, V.H., Voung, P.T.: An extragradient-type method for solving nonmonotone quasi-equilibrium problems. Optimization 67(5), 651–664 (2018)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Voung, P.T., Strodiot, J.J., Nguyen, V.H.: Extragradient methods and linesearch algorithms for solving Ky Fan inequalities and fixed point problems. J. Optim. Theory Appl. 155(2), 605–627 (2012)MathSciNetzbMATHGoogle Scholar

Copyright information

© Istituto di Informatica e Telematica del Consiglio Nazionale delle Ricerche 2018

Authors and Affiliations

  • Olaniyi. S. Iyiola
    • 1
    Email author
  • Ferdinard U. Ogbuisi
    • 2
    • 3
  • Yekini Shehu
    • 3
    • 4
  1. 1.Department of Mathematics, Computer Science and Information SystemsCalifornia University of PennsylvaniaCaliforniaUSA
  2. 2.School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa
  3. 3.Department of MathematicsUniversity of NigeriaNsukkaNigeria
  4. 4.Institute of MathematicsUniversity of WürzburgWürzburgGermany

Personalised recommendations