, 55:50 | Cite as

SDFEM for an elliptic singularly perturbed problem with two parameters

  • Lj. TeofanovEmail author
  • M. Brdar
  • S. Franz
  • H. Zarin


A singularly perturbed problem with two small parameters in two dimensions is investigated. Using its discretization by a streamline-diffusion finite element method with piecewise bilinear elements on a Shishkin mesh, we analyze the superconvergence property of the method and suggest the choice of stabilization parameters to attain optimal error estimate in the corresponding streamline-diffusion norm. Numerical tests confirm our theoretical results.


Singularly perturbed problem Two small parameters Streamline-diffusion method Superconvergence Stabilization parameter 

Mathematics Subject Classification

65N12 65N15 65N30 65N50 


  1. 1.
    Brdar, M., Zarin, H., Teofanov, Lj: A singularly perturbed problem with two parameters in two dimensions on graded meshes. Comput. Math. Appl. 72, 2582–2603 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Franz, S., Linß, T., Roos, H.-G.: Superconvergence analysis of the SDFEM for eliptic problems with characteristic layers. Appl. Numer. Math. 58, 1818–1829 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Franz, S., Roos, H.-G.: Error estimation in a balanced norm for a convection-diffusion problem with two different boundary layers. Calcolo 51, 423–440 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hughes, T.J.R., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R. (ed.) Finite Element Methods for Convection Dominated Flows. AMD, vol. 34, pp. 19–35. American Society of Mechanical Engineers, New York (1979)Google Scholar
  5. 5.
    Johnson, C., Navert, U.: An analysis of some finite element methods for advection-diffusion problems. In: Axelsson, O., Frank, L.S., van der Sluis, A. (eds.) Analytical and Numerical Approaches to Asymptotic Problems in Analysis, pp. 99–116. North Holland, Amsterdam (1981)Google Scholar
  6. 6.
    Johnson, C., Schatz, A.H., Wahlbin, L.B.: Crosswind smear and pointwise errors in streamline diffusion finite element methods. Math. Comput. 49, 25–38 (1987)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Linß, T.: Anisotropic meshes and streamline-diffusion stabilization for convection–diffusion problems. Commun. Numer. Meth. Eng. 21(10), 515–525 (2005)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Linß, T., Stynes, M.: Asymptotic analysis and Shishkin-type decomposition for an elliptic convection–diffusion problem. J. Math. Anal. Appl. 261, 604–632 (2001)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Niijima, K.: Pointwise error estimates for a streamline diffusion finite element scheme. Numer. Math. 56, 707–719 (1990)MathSciNetCrossRefGoogle Scholar
  10. 10.
    O’Malley, R.E.: Introduction to Singular Perturbations. Academic Press, New York (1974)zbMATHGoogle Scholar
  11. 11.
    Roos, H.-G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations. Convection–Diffusion and Flow Problems, 2nd edn. Springer, New York (2008)zbMATHGoogle Scholar
  12. 12.
    Roos, H.-G., Uzelac, Z.: The SDFEM for a convection–diffusion problem with two small parameters. Comput. Methods Appl. Math. 3, 443–458 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Schlichting, H.: Boundary Layer Theory, 7th edn. McGraw-Hill, New York (1979)zbMATHGoogle Scholar
  14. 14.
    Stynes, M.: Steady-state convection–diffusion problems. Acta Numer. 14, 445–508 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Stynes, M., Tobiska, L.: The SDFEM for a convection–diffusion problem with a boundary layer: optimal error analysis and enhancement of accuracy. SIAM J. Numer. Anal. 41, 1620–1642 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Teofanov, Lj., Roos, H.-G.: An elliptic singularly perturbed problem with two parameters I: solution decomposition. J. Comput. Appl. Math. 206, 1082–1097 (2007)Google Scholar
  17. 17.
    Teofanov, Lj., Roos, H.-G.: An elliptic singularly perturbed problem with two parameters II: robust finite element solution. J. Comput. Appl. Math. 212, 374–389 (2008)Google Scholar
  18. 18.
    Teofanov, Lj., Zarin, H.: Superconvergence analysis of a finite element method for a two-parameter singularly perturbed problem. BIT. Numer. Math. 49, 743–765 (2009)Google Scholar
  19. 19.
    Zhou, G.: How accurate is the streamline diffusion finite element method? Math. Comput. 66, 31–44 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Istituto di Informatica e Telematica del Consiglio Nazionale delle Ricerche 2018

Authors and Affiliations

  1. 1.Department for Fundamental Disciplines, Faculty of Technical SciencesUniversity of Novi SadNovi SadSerbia
  2. 2.Faculty of TechnologyUniversity of Novi SadNovi SadSerbia
  3. 3.Institute of Scientific ComputingTechnical University of DresdenDresdenGermany
  4. 4.Department of Mathematics and Informatics, Faculty of SciencesUniversity of Novi SadNovi SadSerbia

Personalised recommendations