Advertisement

Calcolo

, 55:53 | Cite as

An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints

  • Peiting Gao
  • Chuanjiang He
Article
  • 43 Downloads

Abstract

In this paper, based on the hyperplane projection technique, we propose a three-term conjugate gradient method for solving nonlinear monotone equations with convex constraints. Due to the derivative-free feature and lower storage requirement, the proposed method can be applied to the solution of large-scale non-smooth nonlinear monotone equations. Under some mild assumptions, the global convergence is proved when the line search fulfils the backtracking line search condition. Moreover, we prove that the proposed method is R-linearly convergent. Numerical results show that our method is competitive and efficient for solving large-scale nonlinear monotone equations with convex constraints.

Keywords

Conjugate gradient method Convex constraints Large-scale problems Nonlinear equations 

Mathematics Subject Classification

65F10 90C52 65K05 

Notes

Acknowledgements

The authors gratefully acknowledge the helpful comments and suggestions of the anonymous reviewers.

References

  1. 1.
    Wood, A.J., Wollenberg, B.F.: Power Generations, Operations, and Control. Wiley, New York (1996)Google Scholar
  2. 2.
    Meintjes, K., Morgan, A.P.: A methodology for solving chemical equilibrium systems. Appl. Math. Comput. 22, 333–361 (1987)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Meintjes, K., Morgan, A.P.: Chemical equilibrium systems as numerical test problems. ACM Trans. Math. Softw. 16, 143–151 (1990)CrossRefGoogle Scholar
  4. 4.
    El-Hawary, M.E.: Optimal Power Flower: Solution Techniques, Requirement, and Challenges. IEEE Service Center, Piscataway (1996)Google Scholar
  5. 5.
    Dirkse, S.P., Ferris, M.C.: MCPLIB: a collection of nonlinear mixed complementarity problems. Optim. Methods Softw. 5, 319–345 (1995)CrossRefGoogle Scholar
  6. 6.
    Dennis, J.E., Moré, J.J.: A characterization of superlinear convergence and its application to quasi-Newton methods. Math. Comput. 28, 549–560 (1974)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dennis, J.E., Moré, J.J.: Quasi-Newton method, motivation and theory. SIAM Rev. 19, 46–89 (1977)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dennis, J.E., Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations, Prentice-Hall, Englewood Cliffs, NJ(1983)Google Scholar
  9. 9.
    Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg-Marquardt method. Comput. Supplementum 15, 239–249 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Wang, C.W., Wang, Y.J., Xu, C.L.: A projection method for a system of nonlinear monotone equations with convex constraints. Math. Methods Oper. Res. 66, 33–46 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cheng, W.Y.: A PRP type method for systems of monotone equations. Math. Comput. Modell. 50, 15–20 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Polak, E., Ribière, G.: Note sur la convergence de directions conjugées”. Revue Francaise d’informatique et de recherche Opérationnelle, série rouge 16, 35–43 (1969)zbMATHGoogle Scholar
  15. 15.
    Polyak, B.T.: The conjugate gradient mehod in extreme problems. USSR Comput. Math. Math. Phys. 9, 94–112 (1969)CrossRefGoogle Scholar
  16. 16.
    Li, D.H., Wang, X.L.: A modified Fletcher-Reeves-type derivative-free method for symmetric nonlinear equations. Numer. Algebra Control Optim. 1, 71–82 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhang, L., Zhou, W., Li, D.H.: Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijio-type line search. Numer. Math. 104, 561–572 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Xiao, Y., Zhu, H.: A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing. J. Math. Anal. Appl. 405, 310–319 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wang, X.Y., Li, S.J., Kou, X.P.: A self-adaptive three-term conjugate gradient method for monotone nonlinear equations with convex constraints. Calcolo 53, 133–145 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Beale, E.M.L.: A derivation of conjugate gradients. In: Lootsma, F.A. (ed.) Numerical Methods for Nonlinear Optimization, pp. 39–43. Academic Press, London (1972)Google Scholar
  22. 22.
    Nazareth, L.: A conjugate direction algorithm without line search. J. Optim Theory Appl. 23, 373–387 (1997)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhang, L., Zhou, W., Li, D.H.: A descent modified Polak-Ribière–Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal. 26, 629–640 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhang, L., Zhou, W., Li, D.H.: Some descent three-term conjugate gradient methods and their global convergece. Optim. Methods Softw. 22, 697–711 (2007)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Cheng, W.: A two-term PRP-based descent method. Numer. Funct. Anal. Optim. 28, 1217–1230 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Zhang, L., Zhou, W.: Spectral gradient projection method for solving nonlinear monotone equations. Comput. Appl. Math. 196, 478–484 (2006)MathSciNetCrossRefGoogle Scholar
  27. 27.
    La Cruz, W., Martinez, J.M., Raydon, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75, 1429–1448 (2006)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhou, W.J., Li, D.H.: Limited memory BFGS methods for nonlinear monotone equations. J. Comput. Math. 25, 89–96 (2007)MathSciNetGoogle Scholar

Copyright information

© Istituto di Informatica e Telematica del Consiglio Nazionale delle Ricerche 2018

Authors and Affiliations

  1. 1.College of Mathematics and StatisticsChongqing UniversityChongqingChina

Personalised recommendations