Advertisement

Calcolo

, 55:46 | Cite as

A note on the condition number of the scaled total least squares problem

  • Shaoxin Wang
  • Hanyu Li
  • Hu Yang
Article
  • 92 Downloads

Abstract

In this paper, we show that the normwise condition number of the scaled total least squares problem can be transformed into a new and compact form. Considering the relationship between the scaled total least squares problem and the total least squares problem, we obtain something new on the normwise condition number of the total least squares problem. The new forms of the normwise condition number are of particular interest in the following two aspects. Firstly, it is easy to use for the practitioners from applied disciplines. Secondly, the new forms enjoy great computational efficiency and require very little storage space compared with its original forms. Numerical examples are given to illustrate the results.

Keywords

The scaled total least squares problem Normwise condition number Compact form Condition number estimation 

Mathematics Subject Classification

65F35 15A63 15A06 

Notes

Acknowledgements

The authors are grateful to the anonymous referees and the Editor for their detailed and helpful comments that led to a substantial improvement to the paper.

References

  1. 1.
    Baboulin, M., Gratton, S.: A contribution to the conditioning of the total least-squares problem. SIAM J. Matrix Anal. Appl. 32(3), 685–699 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, New York (2003)zbMATHGoogle Scholar
  3. 3.
    Björck, A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)CrossRefGoogle Scholar
  4. 4.
    Björck, Å., Heggernes, P., Matstoms, P.: Methods for large scale total least squares problems. SIAM J. Matrix Anal. Appl. 22(2), 413–429 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bürgisser, P., Cucker, F.: Condition: The Geometry of Numerical Algorithms. Grundlehren der mathematischen Wissenschaften, vol. 349. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  6. 6.
    Diao, H.A., Sun, Y.: Mixed and componentwise condition numbers for a linear function of the solution of the total least squares problem. Linear Algebra Appl. 544, 1–29 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Diao, H.A., Wei, Y., Xie, P.: Small sample statistical condition estimation for the total least squares problem. Numer. Algorithms 75(2), 1–21 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Geurts, A.J.: A contribution to the theory of condition. Numer. Math. 39(1), 85–96 (1982)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Golub, G.H., Van Loan, C.F.: An analysis of the total least squares problem. SIAM J. Numer. Anal. 17(6), 883–893 (1980)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Golub, G.H., Van Loan, C.F.: Matrix Computation, 4th edn. Johns Hopkins University Press, Baltimore (2013)zbMATHGoogle Scholar
  11. 11.
    Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)CrossRefGoogle Scholar
  12. 12.
    Higham, D.J., Higham, N.J.: Backward error and condition of structured linear systems. SIAM J. Matrix Anal. Appl. 13(1), 162–175 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, New York (1991)CrossRefGoogle Scholar
  14. 14.
    Jia, Z., Li, B.: On the condition number of the total least squares problem. Numer. Math. 125(1), 61–87 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kamm, J., Nagy, J.: A total least squares method for Toeplitz systems of equations. BIT 38, 560–582 (1998)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Li, B., Jia, Z.: Some results on condition numbers of the scaled total least squares problem. Linear Algebra Appl. 435(3), 674–686 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Li, H., Wang, S.: Partial condition number for the equality constrained linear least squares problem. Calcolo 54(4), 1121–1146 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Li, H., Wang, S.: On the partial condition numbers for the indefinite least squares problem. Appl. Numer. Math. 123, 200–220 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Paige, C.C., Strakoš, Z.: Scaled total least squares fundamentals. Numer. Math. 91(1), 117–146 (2002)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Rao, B.D.: Unified treatment of LS, TLS and truncated SVD methods using a weighted TLS framework. In: Van Huffel, S. (ed.) Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modelling, pp. 11–20. SIAM, Philadelphia (1997)Google Scholar
  21. 21.
    Rice, J.R.: A theory of condition. SIAM J. Numer. Anal. 3(2), 287–310 (1966)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Rump, S.M.: Structured perturbations part I: Normwise distances. SIAM J. Matrix Anal. Appl. 25(1), 1–30 (2003)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Rump, S.M.: Structured perturbations part II: componentwise distances. SIAM J. Matrix Anal. Appl. 25(1), 31–56 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sun, J.G.: A note on simple non-zero singular values. J. Comput. Math. 6, 258–266 (1988)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Tuzlukov, V.: Signal Processing Noise. CRC Press, Boca Raton (2002)CrossRefGoogle Scholar
  26. 26.
    Wang, G., Wei, Y., Qiao, S.: Generalized Inverses: Theory and Computations. Science Press, Beijing (2004)zbMATHGoogle Scholar
  27. 27.
    Xie, P., Wei, Y., Xiang, H.: Perturbation analysis and randomized algorithms for large-scale total least squares problems. arXiv preprint arXiv:1401.6832 (2014)
  28. 28.
    Zhou, L., Lin, L., Wei, Y., Qiao, S.: Perturbation analysis and condition numbers of scaled total least squares problems. Numer. Algorithms 51(3), 381–399 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Istituto di Informatica e Telematica del Consiglio Nazionale delle Ricerche 2018

Authors and Affiliations

  1. 1.School of StatisticsQufu Normal UniversityQufuPeople’s Republic of China
  2. 2.College of Mathematics and StatisticsChongqing UniversityChongqingPeople’s Republic of China

Personalised recommendations