Neurological Sciences

, Volume 40, Issue 4, pp 801–811 | Cite as

Expression analysis of long non-coding RNAs and their target genes in multiple sclerosis patients

  • Maziar Ganji
  • Arezou SayadEmail author
  • Mir Davood Omrani
  • Shahram Arsang-Jang
  • Mehrdokht Mazdeh
  • Mohammad TaheriEmail author
Original Article


Multiple sclerosis (MS) is a progressive chronic autoimmune-mediated disease. Recently, long non-coding RNAs (lncRNAs) are characterized to participate in the adjustment of immune responses. Here, we evaluated the expression levels of GSTT1-AS1 and IFNG-AS1 lncRNAs and their targets (TNF and IFNG, respectively) in Iranian MS patients.

In this case-control study, 50 relapsing-remitting MS patients and 50 healthy subjects were recruited. Expressions of GSTT1-AS1 and IFNG-AS1 lncRNAs, as well as TNF and IFNG genes, were assessed in their peripheral blood samples by SYBR Green-based Real-time quantitative PCR.

Expression levels of GSTT1-AS1 and IFNG-AS1 lncRNAs were both significantly downregulated (p values 0.032 and 0.013, respectively). On the other hand, the expression of TNF and IFNG showed increased levels, however, did not reach statistical significance after our analysis (p > 0.05). Spearman correlation analysis showed that GSTT1-AS1 had a significant positive moderate correlation with IFNG-AS1 (r = 0.541, p < 0.0001), IFNG (r = 0.329, p = 0.001), and TNF (r = 0.204, p = 0.041). Also, IFNG-AS1 revealed the same correlation with IFNG (r = 0.475, p < 0.0001) as well as TNF (r = 0.399, p < 0.0001). Furthermore, GSTT1-AS1 (r = 0.313, p = 0.027) and (IFNG r = 0.478, p < 0.0001) demonstrated a significant positive correlation with age at onset.

Briefly, the current study provided for the first time dysregulation of GSTT1-AS1 and IFNG-AS lncRNAs network in MS, which highlights the significant role of epigenetic pathways in this autoimmune disorder. Larger sample size and further investigation assays could shed light on the underlying mechanisms in this area of science.


Multiple sclerosis IFNG TNF GSTT1-AS1 IFNG-AS 


Funding information

The present article is financially supported by “Research Department of the School of Medicine Shahid Beheshti University of Medical Sciences.”

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    PILLI D, ZOU A, TEA F, DALE RC, BRILOT F (2017) Expanding role of T cells in human autoimmune diseases of the central nervous system. Front Immunol 8:652CrossRefGoogle Scholar
  2. 2.
    RIEDHAMMER C, WEISSERT R (2015) Antigen presentation, autoantigens, and immune regulation in multiple sclerosis and other autoimmune diseases. Front Immunol 6Google Scholar
  3. 3.
    SAHRAIAN MA, SAHEBKAR M, DEHGHANI R, DERAKHSHAN-JAZARI M, KAZAMI-MOGHADDAM V, KOUCHAKI E (2017) Multiple sclerosis-a disease on a dramatically rising trend in Iran: review of possible reasons. Iran J Neurolt 16:34Google Scholar
  4. 4.
    DENDROU CA, FUGGER L, FRIESE MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15:545–558CrossRefGoogle Scholar
  5. 5.
    JONES A, KERMODE A, LUCAS R, CARROLL W, NOLAN D, HART P (2017) Circulating immune cells in multiple sclerosis. Clin Exp Immunol 187:193–203CrossRefGoogle Scholar
  6. 6.
    COSMI L, MAGGI L, SANTARLASCI V, LIOTTA F, ANNUNZIATO F (2014) T helper cells plasticity in inflammation. Cytometry Part A 85:36–42CrossRefGoogle Scholar
  7. 7.
    RAPHAEL I, NALAWADE S, EAGAR TN, FORSTHUBER TG (2015) T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74:5–17CrossRefGoogle Scholar
  8. 8.
    MARQUES-ROCHA JL, SAMBLAS M, MILAGRO FI, BRESSAN J, MARTÍNEZ JA, MARTI A (2015) Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J 29:3595–3611CrossRefGoogle Scholar
  9. 9.
    OLMOS G, LLADÓ J (2014) Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediat Inflamm 2014:1–12CrossRefGoogle Scholar
  10. 10.
    TAHERI M, NEMATI S, MOVAFAGH A, SABERI M, MIRFAKHRAIE R, EFTEKHARIAN MM, ARSANG-JANG S, REZAGHOLIZADEH A, SAYAD A (2016) TRAIL gene expression analysis in multiple sclerosis patients. Hum Antibodies 24:33–38CrossRefGoogle Scholar
  11. 11.
    EFTEKHARIAN MM, GHAFOURI-FARD S, SOUDYAB M, OMRANI MD, RAHIMI M, SAYAD A, KOMAKI A, MAZDEH M, TAHERI M (2017) Expression analysis of long non-coding RNAs in the blood of multiple sclerosis patients. J Mol Neurosci 63:333–341CrossRefGoogle Scholar
  12. 12.
    SANTORO M, NOCITI V, LUCCHINI M, DE FINO C, LOSAVIO FA, MIRABELLA M (2016) Expression profile of long non-coding RNAs in serum of patients with multiple sclerosis. J Mol Neurosci 59:18–23CrossRefGoogle Scholar
  13. 13.
    WANG A, WANG J, LIU Y, ZHOU Y (2017) Mechanisms of long non-coding RNAs in the assembly and plasticity of neural circuitry. Front Neural Circuits 11Google Scholar
  14. 14.
    ZHANG F, GAO C, MA XF, PENG XL, ZHANG RX, KONG DX, SIMARD AR, HAO JW (2016) Expression profile of long noncoding RNAs in peripheral blood mononuclear cells from multiple sclerosis patients. CNS Neurosci Ther 22:298–305CrossRefGoogle Scholar
  15. 15.
    WANG Y, ZHONG H, XIE X, CHEN CY, HUANG D, SHEN L, ZHANG H, CHEN ZW, ZENG G (2015b) Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection. Proc Natl Acad Sci 112:E3883–E3892CrossRefGoogle Scholar
  16. 16.
    AUNE TM, CROOKE PS, SPURLOCK CF (2016) Long noncoding RNAs in T lymphocytes. J Leukoc Biol 99:31–44CrossRefGoogle Scholar
  17. 17.
    PENG H, LIU Y, TIAN J, MA J, TANG X, RUI K, TIAN X, MAO C, LU L, XU H (2015) The long noncoding RNA IFNG-AS1 promotes T helper type 1 cells response in patients with Hashimoto’s thyroiditis. Sci Rep 5Google Scholar
  18. 18.
    VIGNEAU S, ROHRLICH P-S, BRAHIC M, BUREAU J-F (2003) Tmevpg1, a candidate gene for the control of Theiler’s virus persistence, could be implicated in the regulation of gamma interferon. J Virol 77:5632–5638CrossRefGoogle Scholar
  19. 19.
    COLLIER SP, COLLINS PL, WILLIAMS CL, BOOTHBY MR, AUNE TM (2012) Cutting edge: influence of Tmevpg1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J Immunol 189:2084–2088CrossRefGoogle Scholar
  20. 20.
    COLLIER SP, HENDERSON MA, TOSSBERG JT, AUNE TM (2014) Regulation of the Th1 genomic locus from Ifng through Tmevpg1 by T-bet. J Immunol 193:3959–3965CrossRefGoogle Scholar
  21. 21.
    CSEPANY T (2018) Diagnosis of multiple sclerosis: a review of the 2017 revisions of the McDonald criteria. Ideggyogy Sz 71:321–329CrossRefGoogle Scholar
  22. 22.
    SAYAD A, GHAFOURI-FARD S, OMRANI MD, NOROOZI R, TAHERI M (2017) Myxovirus resistance protein A (MxA) polymorphism is associated with IFNβ response in Iranian multiple sclerosis patients. Neurol Sci 38:1093–1099CrossRefGoogle Scholar
  23. 23.
    TAHERI M, GHAFOURI-FARD S, SOLGI G, SAYAD A, MAZDEH M, OMRANI MD (2017) Determination of cytokine levels in multiple sclerosis patients and their relevance with patients’ response to Cinnovex. Cytokine 96:138–143CrossRefGoogle Scholar
  24. 24.
    MAZDEH M, TAHERI M, SAYAD A, BAHRAM S, OMRANI MD, MOVAFAGH A, INOKO H, AKBARI MT, NOROOZI R, HAJILOOI M, SOLGI G (2016) HLA genes as modifiers of response to IFN-beta-1a therapy in relapsing-remitting multiple sclerosis. Pharmacogenomics 17:489–498CrossRefGoogle Scholar
  25. 25.
    WANG Y, ZHONG H, XIE X, CHEN CY, HUANG D, SHEN L, ZHANG H, CHEN ZW, ZENG G (2015a) Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection. Proc Natl Acad Sci U S A 112:E3883–E3892CrossRefGoogle Scholar
  26. 26.
    BECK J, RONDOT P, CATINOT L, FALCOFF E, KIRCHNER H, WIETZERBIN J (1988) Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol Scand 78:318–323CrossRefGoogle Scholar
  27. 27.
    CHOFFLON M, JUILLARD C, JUILLARD P, GAUTHIER G, GRAU GE (1992) Tumor necrosis factor alpha production as a possible predictor of relapse in patients with multiple sclerosis. Eur Cytokine Netw 3:523–531Google Scholar
  28. 28.
    CHOFFLON M, ROTH S, JUILLARD C, PAUNIER A, JUILLARD P, DEGROOTE D, GRAU G (1997) Tumor necrosis factor production capacity as a potentially useful parameter to monitor disease activity in multiple sclerosis. Eur Cytokine Netw 8:253–257Google Scholar
  29. 29.
    DEBRUYNE J, PHILIPPÉ J, DEREUCK J, WILLEMS A, LEROUX-ROELS G (1998) Relapse markers in multiple sclerosis: are in vitro cytokine production changes reflected by circulatory T-cell phenotype alterations? Mult Scler J 4:193–197CrossRefGoogle Scholar
  30. 30.
    HOLLIFIELD RD, HARBIGE LS, PHAM-DINH D, SHARIEF MK (2003) Evidence for cytokine dysregulation in multiple sclerosis: peripheral blood mononuclear cell production of pro-inflammatory and anti-inflammatory cytokines during relapse and remission. Autoimmunity 36:133–141CrossRefGoogle Scholar
  31. 31.
    SIMPSON S, STEWART N, VAN DER MEI I, OTAHAL P, CHARLESWORTH J, PONSONBY A-L, BLIZZARD L, DWYER T, PITTAS F, GIES P (2015) Stimulated PBMC-produced IFN-γ and TNF-α are associated with altered relapse risk in multiple sclerosis: results from a prospective cohort study. J Neurol Neurosurg Psychiatry 86:200–207CrossRefGoogle Scholar
  32. 32.
    KÜÇÜKALI Cİ, KÜRTÜNCÜ M, ÇOBAN A, ÇEBI M, TÜZÜN E (2015) Epigenetics of multiple sclerosis: an updated review. NeuroMolecular Med 17:83–96CrossRefGoogle Scholar
  33. 33.
    KULAR L, CASTELO-BRANCO G, JAGODIC M (2017) Epigenetics and multiple sclerosis. In: Neuropsychiatric disorders and epigenetics. ElsevierGoogle Scholar
  34. 34.
    GUIL S, ESTELLER M (2012) Cis-acting noncoding RNAs: friends and foes. Nat Struct Mol Biol 19:1068–1075CrossRefGoogle Scholar
  35. 35.
    NAGANO T, FRASER P (2011) No-nonsense functions for long noncoding RNAs. Cell 145:178–181CrossRefGoogle Scholar
  36. 36.
    BECHER B, SPATH S, GOVERMAN J (2017) Cytokine networks in neuroinflammation. Nat Rev Immunol 17:49–59CrossRefGoogle Scholar
  37. 37.
    GOVERMAN J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9:393–407CrossRefGoogle Scholar
  38. 38.
    PHILIPPÉ J, DEBRUYNE J, LEROUX-ROELS G, WILLEMS A, DEREUCK J (1996) In vitro TNF-α, IL-2 and IFN-γ production as markers of relapses in multiple sclerosis. Clin Neurol Neurosurg 98:286–290CrossRefGoogle Scholar
  39. 39.
    VAN OOSTEN BW, BARKHOF F, SCHOLTEN PE, VON BLOMBERG BME, ADÈR HJ, POLMAN CH (1998) Increased production of tumor necrosis factor α, and not of interferon γ, preceding disease activity in patients with multiple sclerosis. Arch Neurol 55:793–798CrossRefGoogle Scholar
  40. 40.
    GOMEZ JA, WAPINSKI OL, YANG YW, BUREAU J-F, GOPINATH S, MONACK DM, CHANG HY, BRAHIC M, KIRKEGAARD K (2013) The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 152:743–754CrossRefGoogle Scholar
  41. 41.
    LI H, HAO Y, ZHANG D, FU R, LIU W, ZHANG X, XUE F, YANG R (2016) Aberrant expression of long noncoding RNA TMEVPG1 in patients with primary immune thrombocytopenia. Autoimmunity 49:496–502CrossRefGoogle Scholar

Copyright information

© Fondazione Società Italiana di Neurologia 2019

Authors and Affiliations

  1. 1.Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Department of Medical Genetics, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Urogenital Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
  4. 4.Clinical Research Development Center (CRDU)Qom University of Medical SciencesQomIran
  5. 5.Neurophysiology Research CenterHamadan University of Medical SciencesHamadanIran

Personalised recommendations