Increasing prevalence of multiple sclerosis in Tuscany, Italy

  • Daiana BezziniEmail author
  • Monica Ulivelli
  • Elisa Gualdani
  • Matilde Razzanelli
  • Fabio Ferretti
  • Giuseppe Meucci
  • Paolo Francesconi
  • Mario A. Battaglia
Original Article


Background and rationale

An increase of prevalence and incidence of multiple sclerosis (MS) has been reported in several countries, especially taking into account a long-term evaluation. This increasing trend often reflects improved case identification and ascertainment due to the refinement of diagnostic criteria. The aim of this study was to update the prevalence rate of MS in Tuscany (central Italy) as of 2017, and to assess if there has been an increasing trend of prevalence in this Region considering a short period of analysis, from 2014 to 2017.


To capture prevalent cases, a case-finding algorithm based on administrative data, previously created and validated, was used. As data sources, we considered hospital discharge records, drug-dispensing records, disease-specific exemptions from copayment to health care, home and residential long-term care, and inhabitant registry.


As of January 1, 2017, 7809 cases were identified, of which 69.4% were females and 30.6% were males. Considering temporal variation, an increasing trend was observed, with standardized rates rising from 189.2 in 2014 to 208.7 per 100,000 in 2017.


Results confirm that prevalence increases every year, probably mainly due to the difference between incidence and mortality, resulting in an increasing trend. Moreover, administrative data may accurately identify MS patients in a routinary way and monitor this cohort along disease care pathways.


Multiple sclerosis Increasing prevalence Administrative data Italy 


Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med. 343(13):938–952CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Melcon MO, Correale J, Melcon CM (2014) Is it time for a new global classification of multiple sclerosis? J Neurol Sci. 344(1-2):171–181CrossRefGoogle Scholar
  4. 4.
    Bezzini D, Pepe P, Profili F, Meucci G, Ulivelli M, Bartalini S, Battaglia MA, Francesconi P (2017) Multiple sclerosis spatial cluster in Tuscany. Neurol Sci. 38(12):2183–2187CrossRefGoogle Scholar
  5. 5.
    Battaglia MA, Bezzini D (2017) Estimated prevalence of multiple sclerosis in Italy in 2015. Neurol Sci. 38(3):473–479CrossRefGoogle Scholar
  6. 6.
    Bezzini D, Battaglia MA (2017) Multiple sclerosis epidemiology in Europe. Adv Exp Med Biol. 958:141–159CrossRefGoogle Scholar
  7. 7.
    Warren SA, Svenson LW, Warren KG (2008) Contribution of incidence to increasing prevalence of multiple sclerosis in Alberta, Canada. Multiple Sclerosis 14:872–879CrossRefGoogle Scholar
  8. 8.
    Mayr WT, Pittock SJ, McClelland RL, Jorgensen NW, Noseworthy JH, Rodriguez M (2003) Incidence and prevalence of multiple sclerosis in Olmsted County, Minnesota, 1985–2000. Neurology 61:1373–1377CrossRefGoogle Scholar
  9. 9.
    Simpson S Jr, Blizzard L, Otahal P, van der Mei I, Taylor B (2011) Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J Neurol Neurosurg Psychiatry 82(10):1132–1141CrossRefGoogle Scholar
  10. 10.
    Alla S, Pearson J, Debernard L, Miller D, Mason D (2014) The increasing prevalence of multiple sclerosis in New Zealand. Neuroepidemiology 42:154–160CrossRefGoogle Scholar
  11. 11.
    Houzen H, Niino M, Hirotani M, Fukazawa T, Kikuchi S, Tanaka K, Sasaki H (2012) Increased prevalence, incidence, and female predominance of multiple sclerosis in northern Japan. J Neurol Sci. 323(1-2):117–122CrossRefGoogle Scholar
  12. 12.
    Alroughani R, Ahmed SF, Behbahani R, Khan R, Thussu A, Alexander KJ, Ashkanani A, Nagarajan V, Al-Hashel J (2014) Increasing prevalence and incidence rates of multiple sclerosis in Kuwait. Mult Scler. 20(5):543–547CrossRefGoogle Scholar
  13. 13.
    AISM. Barometro della sclerosi multipla 2018Google Scholar
  14. 14.
    Granieri E, De Mattia G, Laudisi M, Govoni V, Castellazzi M, Caniatti L, Baldi E, Groppo E, Pugliatti M, Casetta I (2018) Multiple sclerosis in Italy: a 40-year follow-up of the prevalence in Ferrara. Neuroepidemiology. 51(3-4):158–165CrossRefGoogle Scholar
  15. 15.
    Solaro C, Ponzio M, Moran E, Tanganelli P, Pizio R, Ribizzi G, Venturi S, Mancardi GL, Battaglia MA (2015) The changing face of multiple sclerosis: prevalence and incidence in an aging population. Mult Scler. 21(10):1244–1250CrossRefGoogle Scholar
  16. 16.
    Caniglia-Tenaglia M, Guttmann S, Monaldini C, Manzaroli D, Volpini M, Stumpo M, Groppo E, Casetta I, Govoni V, Fonderico M, Pugliatti M, Granieri E (2018) Multiple sclerosis in the Republic of San Marino, Italian peninsula: an incidence and prevalence study from a high-risk area. Neurol Sci. 39(7):1231–1236CrossRefGoogle Scholar
  17. 17.
    Grassivaro F, Puthenparampil M, Pengo M, Saiani M, Venturini M, Stropparo E, Perini P, Rinaldi F, Freddi N, Cadaldini M, Colledan L, Piccinno MG, Pedrazzoli E, Gallo P (2018) Multiple sclerosis incidence and prevalence trends in the province of Padua, Northeast Italy, 1965–2018. Neuroepidemiology. 52(1-2):41–46CrossRefGoogle Scholar
  18. 18.
    Nicoletti A, Patti F, Lo Fermo S, Messina S, Bruno E, Quattrocchi G, Laisa P, Cilia S, Mostile G, Marziolo R, Scillieri R, Maimone D, Zappia M (2011) Increasing frequency of multiple sclerosis in Catania, Sicily: a 30-year survey. Mult Scler. 17(3):273–280CrossRefGoogle Scholar
  19. 19.
    Bezzini D, Policardo L, Meucci G, Ulivelli M, Bartalini S, Profili F, Battaglia MA, Francesconi P (2016) Prevalence of multiple sclerosis in Tuscany (central Italy): a study based on validated administrative data. Neuroepidemiology. 46(1):37–42CrossRefGoogle Scholar
  20. 20.
    Esteve J, Benhamou E, Raymond L (1994) Statistical methods in cancer research, Volume IV. Descriptive epidemiology. IARC Sci Publ 128:1–302Google Scholar
  21. 21.
    Bezzini D, Policardo L, Profili F, Meucci G, Ulivelli M, Bartalini S, Francesconi P, Battaglia MA (2018) Multiple sclerosis incidence in Tuscany from administrative data. Neurol Sci. 39(11):1881–1885CrossRefGoogle Scholar
  22. 22.
    Battaglia MA,Bezzini D,Ponzio M,Cipriani F. Mortality from multiple sclerosis in the region of Tuscany (central Italy). XLII Congress of the Italian Neurology Society. Torino, 22-25 October 2011Google Scholar
  23. 23.
    Portale dati Marsupio-Macro–Agenzia Regionale di Sanità, Regione Toscana.
  24. 24.
  25. 25.
    Pirastu R, Zona A, Ancona C, Bruno C, Fano V, Fazzo L, Iavarone I, Minichilli F, Mitis F, Pasetto R, Comba P (2011) Mortality results in SENTIERI project. Epidemiol Prev 35((5-6) Suppl. 4):103–106Google Scholar
  26. 26.
    Ponzio M, Gerzeli S, Brichetto G, Bezzini D, Mancardi GL, Zaratin P, Battaglia MA (2015) Economic impact of multiple sclerosis in Italy: focus on rehabilitation costs. Neurol Sci. 36(2):227–234CrossRefGoogle Scholar
  27. 27.
    Bargagli AM, Colais P, Agabiti N, Mayer F, Buttari F, Centonze D, Di Folco M, Filippini G, Francia A, Galgani S, Gasperini C, Giuliani M, Mirabella M, Nociti V, Pozzilli C, Davoli M (2016) Prevalence of multiple sclerosis in the Lazio region, Italy: use of an algorithm based on health information systems. J Neurol. 263(4):751–759CrossRefGoogle Scholar
  28. 28.
    Krysko KM, Ivers NM, Young J, O’Connor P, Tu K (2015) Identifying individuals with multiple sclerosis in an electronic medical record. Mult Scler. 21(2):217–224CrossRefGoogle Scholar
  29. 29.
    Marrie RA, Yu N, Blanchard J, Leung S, Elliott L (2010) The rising prevalence and changing age distribution of multiple sclerosis in Manitoba. Neurology. 74(6):465–471CrossRefGoogle Scholar
  30. 30.
    Baldacci F, Policardo L, Rossi S, Ulivelli M, Ramat S, Grassi E, Palumbo P, Giovannelli F, Cincotta M, Ceravolo R, Sorbi S, Francesconi P, Bonuccelli U (2015) Reliability of administrative data for the identification of Parkinson’s disease cohorts. Neurol Sci. 36(5):783–786CrossRefGoogle Scholar

Copyright information

© Fondazione Società Italiana di Neurologia 2019

Authors and Affiliations

  1. 1.Department of Life SciencesUniversity of SienaSienaItaly
  2. 2.Department of Medical Sciences, Surgery and NeurosciencesUniversity of SienaSienaItaly
  3. 3.Agenzia Regionale di Sanità della ToscanaFlorenceItaly
  4. 4.Unit of NeurologyUSL 6LivornoItaly

Personalised recommendations