Cerebrospinal fluid vitamin D-binding protein as a new biomarker for the diagnosis of meningitis

  • Dong-Hyun Lee
  • Heeyoung Kang
  • Jin Hyun Kim
  • Myeong Hee Jung
  • Min-Chul ChoEmail author
Original Article



Meningitis is an inflammatory process involving meninges. It is difficult to diagnose because of the absence of a diagnostic biomarker. We first report here the possibility of cerebrospinal fluid (CSF) vitamin D-binding protein (VDBP) as a new biomarker for the diagnosis of meningitis.


This prospective study enrolled a total of 102 subjects (58 patients with non-neurologic disease, 17 patients with meningitis, and 27 patients with other neurologic diseases) from 2017 to 2018. CSF and blood samples were collected in pairs. Total 25(OH)D in CSF and serum and VDBP levels in serum were measured. GC genotyping was also performed to determine polymorphisms of rs4588 and rs7041. CSF total 25(OH)D and VDBP levels were compared with serum total 25(OH)D and VDBP levels according to disease (meningitis vs. non-meningitis). Receiver operating characteristic (ROC) analysis for the diagnosis of meningitis using CSF VDBP level was performed.


Mean CSF VDBP and serum VDBP levels of all patients were 1.48 ± 1.32 and 181.28 ± 56.90 μg/mL, respectively. CSF VDBP level in the meningitis disease group (3.20 ± 1.49 μg/mL) was significantly (P < 0.001) higher than that in other disease groups. According to ROC curve analysis, the appropriate cut-off value for CSF VDBP was 1.96 μg/mL, showing sensitivity of 82.4% and specificity of 85.9%. AUC of CSF VDBP was 0.879 (95% CI: 0.789–0.962).


CSF VDBP level showed very good diagnostic performance. It could be used as a potential biomarker for the diagnosis of meningitis.


Cerebrospinal fluid Vitamin D-binding protein Meningitis Biomarker 


Funding information

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2018R1C1B5040593). It was also supported by the Lee Jung Ja research grant of Gyeongsang National University Hospital (LJJ-GNUH-2018-001).

Compliance with ethical standards

The study protocol was approved by the Institutional Review Board of Gyeongsang National University Hospital (approval number: 2017-03-010). Written informed consent was obtained from all participants.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Thigpen MC, Whitney CG, Messonnier NE, Zell ER, Lynfield R, Hadler JL, Harrison LH, Farley MM, Reingold A, Bennett NM, Craig AS, Schaffner W, Thomas A, Lewis MM, Scallan E, Schuchat A, Emerging Infections Programs N (2011) Bacterial meningitis in the United States, 1998-2007. N Engl J Med 364(21):2016–2025. CrossRefGoogle Scholar
  2. 2.
    Martin NG, Iro MA, Sadarangani M, Goldacre R, Pollard AJ, Goldacre MJ (2016) Hospital admissions for viral meningitis in children in England over five decades: a population-based observational study. Lancet Infect Dis 16(11):1279–1287. CrossRefGoogle Scholar
  3. 3.
    van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (2006) Community-acquired bacterial meningitis in adults. N Engl J Med 354(1):44–53. CrossRefGoogle Scholar
  4. 4.
    Schuchat A, Robinson K, Wenger JD, Harrison LH, Farley M, Reingold AL, Lefkowitz L, Perkins BA (1997) Bacterial meningitis in the United States in 1995. Active surveillance team. N Engl J Med 337(14):970–976. CrossRefGoogle Scholar
  5. 5.
    Hoogman M, van de Beek D, Weisfelt M, de Gans J, Schmand B (2007) Cognitive outcome in adults after bacterial meningitis. J Neurol Neurosurg Psychiatry 78(10):1092–1096. CrossRefGoogle Scholar
  6. 6.
    van de Beek D, de Gans J, Spanjaard L, Weisfelt M, Reitsma JB, Vermeulen M (2004) Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med 351(18):1849–1859. CrossRefGoogle Scholar
  7. 7.
    Mount HR, Boyle SD (2017) Aseptic and bacterial meningitis: evaluation, treatment, and prevention. Am Fam Physician 96(5):314–322Google Scholar
  8. 8.
    Weisfelt M, van de Beek D, Spanjaard L, Reitsma JB, de Gans J (2006) Community-acquired bacterial meningitis in older people. J Am Geriatr Soc 54(10):1500–1507. CrossRefGoogle Scholar
  9. 9.
    Bhan I (2014) Vitamin d binding protein and bone health. Int J Endocrinol 2014:561214. CrossRefGoogle Scholar
  10. 10.
    Chun RF (2012) New perspectives on the vitamin D binding protein. Cell Biochem Funct 30(6):445–456. CrossRefGoogle Scholar
  11. 11.
    Heijboer AC, Blankenstein MA, Kema IP, Buijs MM (2012) Accuracy of 6 routine 25-hydroxyvitamin D assays: influence of vitamin D binding protein concentration. Clin Chem 58(3):543–548. CrossRefGoogle Scholar
  12. 12.
    Schwartz JB, Lai J, Lizaola B, Kane L, Markova S, Weyland P, Terrault NA, Stotland N, Bikle D (2014) A comparison of measured and calculated free 25(OH) vitamin D levels in clinical populations. J Clin Endocrinol Metab 99(5):1631–1637. CrossRefGoogle Scholar
  13. 13.
    Gomme PT, Bertolini J (2004) Therapeutic potential of vitamin D-binding protein. Trends Biotechnol 22(7):340–345. CrossRefGoogle Scholar
  14. 14.
    Arnaud J, Constans J (1993) Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP). Hum Genet 92(2):183–188CrossRefGoogle Scholar
  15. 15.
    Kamboh MI, Ferrell RE (1986) Ethnic variation in vitamin D-binding protein (GC): a review of isoelectric focusing studies in human populations. Hum Genet 72(4):281–293CrossRefGoogle Scholar
  16. 16.
    Cooke NE, McLeod JF, Wang XK, Ray K (1991) Vitamin D binding protein: genomic structure, functional domains, and mRNA expression in tissues. J Steroid Biochem Mol Biol 40(4–6):787–793CrossRefGoogle Scholar
  17. 17.
    Meier U, Gressner O, Lammert F, Gressner AM (2006) Gc-globulin: roles in response to injury. Clin Chem 52(7):1247–1253. CrossRefGoogle Scholar
  18. 18.
    White P, Cooke N (2000) The multifunctional properties and characteristics of vitamin D-binding protein. Trends Endocrinol Metab 11(8):320–327CrossRefGoogle Scholar
  19. 19.
    Jirikowski GF, Kaunzner UW, Dief Ael E, Caldwell JD (2009) Distribution of vitamin D binding protein expressing neurons in the rat hypothalamus. Histochem Cell Biol 131(3):365–370. CrossRefGoogle Scholar
  20. 20.
    Speeckaert M, Huang G, Delanghe JR, Taes YE (2006) Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clin Chim Acta 372(1–2):33–42. CrossRefGoogle Scholar
  21. 21.
    Gressner OA, Schifflers MC, Kim P, Heuts L, Lahme B, Gressner AM (2009) Questioning the role of actinfree Gc-globulin as actin scavenger in neurodegenerative central nervous system disease: relationship to S-100B levels and blood-brain barrier function. Clin Chim Acta 400(1–2):86–90. CrossRefGoogle Scholar
  22. 22.
    Yang M, Qin Z, Zhu Y, Li Y, Qin Y, Jing Y, Liu S (2013) Vitamin D-binding protein in cerebrospinal fluid is associated with multiple sclerosis progression. Mol Neurobiol 47(3):946–956. CrossRefGoogle Scholar
  23. 23.
    Savonius O, Pelkonen T, Roine I, Viljakainen H, Andersson S, Fernandez J, Peltola H, Helve O (2018) Vitamin D was not associated with survival or cerebrospinal fluid cathelicidin levels in children with bacterial meningitis. Acta Paediatr 107(12):2131–2136. CrossRefGoogle Scholar
  24. 24.
    Zhang L, Ma L, Zhou X, Meng J, Wen J, Huang R, Gao T, Xu L, Zhu L (2018) Diagnostic value of Procalcitonin for bacterial meningitis in children: a comparison analysis between serum and cerebrospinal fluid Procalcitonin levels. Clin Pediatr 9922818809477:159–165. Google Scholar
  25. 25.
    Perga S, Giuliano Albo A, Lis K, Minari N, Falvo S, Marnetto F, Caldano M, Reviglione R, Berchialla P, Capobianco MA, Malentacchi M, Corpillo D, Bertolotto A (2015) Vitamin D binding protein isoforms and apolipoprotein E in cerebrospinal fluid as prognostic biomarkers of multiple sclerosis. PLoS One 10(6):e0129291. CrossRefGoogle Scholar
  26. 26.
    Pardridge WM, Sakiyama R, Coty WA (1985) Restricted transport of vitamin D and a derivatives through the rat blood-brain barrier. J Neurochem 44(4):1138–1141CrossRefGoogle Scholar
  27. 27.
    Jereb M, Muzlovic I, Hojker S, Strle F (2001) Predictive value of serum and cerebrospinal fluid procalcitonin levels for the diagnosis of bacterial meningitis. Infection 29(4):209–212CrossRefGoogle Scholar
  28. 28.
    Bennett J, Basivireddy J, Kollar A, Biron KE, Reickmann P, Jefferies WA, McQuaid S (2010) Blood-brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. J Neuroimmunol 229(1–2):180–191. CrossRefGoogle Scholar
  29. 29.
    Brown J, Bianco JI, McGrath JJ, Eyles DW (2003) 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett 343(2):139–143CrossRefGoogle Scholar
  30. 30.
    Bhan I, Powe CE, Berg AH, Ankers E, Wenger JB, Karumanchi SA, Thadhani RI (2012) Bioavailable vitamin D is more tightly linked to mineral metabolism than total vitamin D in incident hemodialysis patients. Kidney Int 82(1):84–89. CrossRefGoogle Scholar
  31. 31.
    Bikle DD, Gee E, Halloran B, Kowalski MA, Ryzen E, Haddad JG (1986) Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein. J Clin Endocrinol Metab 63(4):954–959. CrossRefGoogle Scholar
  32. 32.
    Bikle DD, Siiteri PK, Ryzen E, Haddad JG (1985) Serum protein binding of 1,25-dihydroxyvitamin D: a reevaluation by direct measurement of free metabolite levels. J Clin Endocrinol Metab 61(5):969–975. CrossRefGoogle Scholar
  33. 33.
    Christensen EI, Birn H (2002) Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3(4):256–266. CrossRefGoogle Scholar
  34. 34.
    Nielson CM, Jones KS, Chun RF, Jacobs JM, Wang Y, Hewison M, Adams JS, Swanson CM, Lee CG, Vanderschueren D, Pauwels S, Prentice A, Smith RD, Shi T, Gao Y, Schepmoes AA, Zmuda JM, Lapidus J, Cauley JA, Bouillon R, Schoenmakers I, Orwoll ES (2016) Free 25-Hydroxyvitamin D: impact of vitamin D binding protein assays on racial-genotypic associations. J Clin Endocrinol Metab 101(5):2226–2234. CrossRefGoogle Scholar
  35. 35.
    Jung JY, Choi DP, Won S, Lee Y, Shin JH, Kim YS, Kim SK, Oh YM, Suh I, Lee SD (2014) Relationship of vitamin D binding protein polymorphisms and lung function in Korean chronic obstructive pulmonary disease. Yonsei Med J 55(5):1318–1325. CrossRefGoogle Scholar
  36. 36.
    Mubashir M, Anwar S, Tareen AK, Mehboobali N, Iqbal K, Iqbal MP (2017) Association of vitamin D deficiency and VDBP gene polymorphism with the risk of AMI in a Pakistani population. Pak J Med Sci 33(6):1349–1354.
  37. 37.
    Haldar D, Agrawal N, Patel S, Kambale PR, Arora K, Sharma A, Tripathi M, Batra A, Kabi BC (2018) Association of VDBP and CYP2R1 gene polymorphisms with vitamin D status in women with polycystic ovarian syndrome: a north Indian study. Eur J Nutr 57(2):703–711. CrossRefGoogle Scholar
  38. 38.
    Knudsen CS, Nexo E, Hojskov CS, Heickendorff L (2012) Analytical validation of the Roche 25-OH vitamin D Total assay. Clin Chem Lab Med 50(11):1965–1968. CrossRefGoogle Scholar

Copyright information

© Fondazione Società Italiana di Neurologia 2019

Authors and Affiliations

  1. 1.Department of Laboratory Medicine, Gyeongsang National University HospitalGyeongsang National University College of MedicineJinju-siRepublic of Korea
  2. 2.Department of Neurology, Gyeongsang National University HospitalGyeongsang National University College of MedicineJinjuRepublic of Korea
  3. 3.Biomedical Research InstituteGyeongsang National University HospitalJinjuRepublic of Korea
  4. 4.Institute of Health Science, Gyeongsang National UniversityJinjuRepublic of Korea

Personalised recommendations