Advertisement

On the central role of mitochondria dysfunction and oxidative stress in Alzheimer’s disease

  • Tobore Onojighofia ToboreEmail author
Review Article

Abstract

Background

Alzheimer’s disease (AD) is the commonest cause of dementia, with approximately 5 million new cases occurring annually. Despite decades of research, its complex pathophysiology and etiopathogenesis presents a major hindrance to the development of an effective treatment and prevention strategy. Aging is the biggest risk factor for the development of AD, and the total number of older people in the population is going to significantly increase in the next decades, suggesting that AD incidence and prevalence is likely to increase in the future. This makes the need for a better understanding of the disease to be extremely urgent.

Methods

A search was done by accessing PubMed/Medline, EBSCO, and PsycINFO databases. The search string used was “(dementia* OR Alzheimer’s) AND (pathophysiology* OR pathogenesis)”. New key terms were identified (new term included “vitamin D, thyroid hormone, mitochondria dysfunction, oxidative stress, testosterone, estrogen, melatonin, progesterone, luteinizing hormone, amyloid-β (Aβ), and hyperphosphorylated tau”). The electronic databases were searched for titles or abstracts containing these terms in all published articles between January 1, 1965, and January 31, 2019. The search was limited to studies published in English and other languages involving both animal and human subjects.

Results

Mitochondria dysfunction and oxidative stress play a critical role in AD etiopathogenesis and pathophysiology.

Conclusion

AD treatment and prevention strategies must be geared towards improving mitochondrial function and attenuating oxidative stress.

Keywords

Dementia pathogenesis Alzheimer’s disease Vitamin D and dementia Thyroid hormone and dementia Mitochondria dysfunction and dementia Oxidative stress and dementia Sex hormones and Alzheimer’s disease Melatonin and dementia Amyloid-β (Aβ) Hyperphosphorylated tau Alpha-synuclein (α-synuclein) 

Notes

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. 1.
    Qiu C, Kivipelto M, von Strauss E (2009) Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11(2):111–128. [cited 2018 Sep 1]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19585947 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M et al (2005) Global prevalence of dementia: a Delphi consensus study. Lancet (London, England) 366(9503):2112–2117. [cited 2018 Sep 1]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16360788 CrossRefGoogle Scholar
  3. 3.
    Wimo A, Winblad B, Aguero-Torres H, von Strauss E (2003) The magnitude of dementia occurrence in the world. Alzheimer Dis Assoc Disord 17(2):63–67. [cited 2018 Nov 17]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12794381 CrossRefPubMedGoogle Scholar
  4. 4.
    Reitz C, Mayeux R (2014) Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 88(4):640–651. [cited 2018 Sep 2]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24398425 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766. [cited 2018 Sep 2]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11274343 CrossRefPubMedGoogle Scholar
  6. 6.
    Crews L, Tsigelny I, Hashimoto M, Masliah E (2009) Role of synucleins in Alzheimer’s disease. Neurotox Res 16(3):306–317. [cited 2018 Sep 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19551456 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wirths O, Bayer TA (2003) α-Synuclein, Aβ and Alzheimer’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry 27(1):103–108. [cited 2018 Sep 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12551731
  8. 8.
    Moussaud S, Jones DR, Moussaud-Lamodière EL, Delenclos M, Ross OA, McLean PJ (2014) Alpha-synuclein and tau: teammates in neurodegeneration? Mol Neurodegener 9(1):43. [cited 2018 Sep 11]. Available from: http://molecularneurodegeneration.biomedcentral.com/articles/10.1186/1750-1326-9-43 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Roher AE, Lowenson JD, Clarke S, Woods AS, Cotter RJ, Gowing E et al (1993) beta-Amyloid-(1–42) is a major component of cerebrovascular amyloid deposits: implications for the pathology of Alzheimer disease. Proc Natl Acad Sci U S A 90(22):10836–10840. [cited 2018 Sep 2]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8248178 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bonda DJ, Wang X, Perry G, Smith MA, Zhu X (2010) Mitochondrial dynamics in Alzheimer’s disease: opportunities for future treatment strategies. Drugs Aging 27(3):181–192. [cited 2018 Sep 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20210366 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta Mol basis Dis 1802(1):2–10. [cited 2018 Sep 4]. Available from: https://www.sciencedirect.com/science/article/pii/S0925443909002427 CrossRefGoogle Scholar
  12. 12.
    Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA et al (2015) Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 74:101–110. [cited 2018 Sep 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26349970 CrossRefPubMedGoogle Scholar
  13. 13.
    Calabrese V, Lodi R, Tonon C, D’Agata V, Sapienza M, Scapagnini G et al (2005) Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci 233(1–2):145–162. [cited 2018 Sep 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15896810 CrossRefPubMedGoogle Scholar
  14. 14.
    Wang X, Wang W, Li L, Perry G, Lee H, Zhu X (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 1842(8):1240–1247. [cited 2018 Sep 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24189435 CrossRefPubMedGoogle Scholar
  15. 15.
    Hata Y, Ma N, Yoneda M, Morimoto S, Okano H, Murayama S et al (2017) Nitrative stress and tau accumulation in amyotrophic lateral sclerosis/Parkinsonism-dementia complex (ALS/PDC) in the Kii Peninsula, Japan. Front Neurosci 11:751. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29403345 CrossRefPubMedGoogle Scholar
  16. 16.
    Swerdlow RH (2018) Mitochondria and mitochondrial cascades in Alzheimer’s Disease. J Alzheimers Dis 62(3):1403–1416. [cited 2019 Mar 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29036828 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ankarcrona M, Mangialasche F, Winblad B (2010) Rethinking Alzheimer’s disease therapy: are mitochondria the key? In: Zhu X, Beal MF, Wang X, Perry G, Smith MA, editors. J Alzheimer’s Dis 20(s2):S579–90. [cited 2018 Sep 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20463405
  18. 18.
    Gillardon F, Rist W, Kussmaul L, Vogel J, Berg M, Danzer K et al (2007) Proteomic and functional alterations in brain mitochondria from Tg2576 mice occur before amyloid plaque deposition. Proteomics 7(4):605–616. [cited 2018 Sep 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17309106 CrossRefPubMedGoogle Scholar
  19. 19.
    Reddy PH, Manczak M, Mao P, Calkins MJ, Reddy AP, Shirendeb U (2010) Amyloid-β and mitochondria in aging and Alzheimer’s disease: implications for synaptic damage and cognitive decline. In: Zhu X, Beal MF, Wang X, Perry G, Smith MA, editors. J Alzheimer’s Dis 20(s2):S499–512. [cited 2019 Mar 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20413847
  20. 20.
    Reddy PH, Beal MF (2008) Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14(2):45–53. [cited 2019 Mar 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18218341 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lunnon K, Keohane A, Pidsley R, Newhouse S, Riddoch-Contreras J, Thubron EB et al (2017) Mitochondrial genes are altered in blood early in Alzheimer’s disease. Neurobiol Aging 53:36–47. [cited 2019 Mar 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28208064 CrossRefPubMedGoogle Scholar
  22. 22.
    Cheng Y, Bai F (2018) The association of tau with mitochondrial dysfunction in Alzheimer’s disease. Front Neurosci 12:163. [cited 2018 Sep 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29623026 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen Z, Zhong C (2014) Oxidative stress in Alzheimer’s disease. Neurosci Bull 30(2):271–281. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24664866 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lovell MA, Xiong S, Xie C, Davies P, Markesbery WR (2004) Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3. J Alzheimers Dis 6(6):659–671. discussion 673–81. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15665406 CrossRefPubMedGoogle Scholar
  25. 25.
    Esteves AR, Arduíno DM, Swerdlow RH, Oliveira CR, Cardoso SM (2009) Oxidative stress involvement in α-synuclein oligomerization in Parkinson’s disease cybrids. Antioxid Redox Signal 11(3):439–448. [cited 2018 Sep 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18717628 CrossRefPubMedGoogle Scholar
  26. 26.
    Goodwin J, Nath S, Engelborghs Y, Pountney DL (2013) Raised calcium and oxidative stress cooperatively promote alpha-synuclein aggregate formation. Neurochem Int 62(5):703–711. [cited 2018 Sep 11]. Available from: https://www.sciencedirect.com/science/article/pii/S0197018612003567 CrossRefPubMedGoogle Scholar
  27. 27.
    Matsubara E, Shoji M, Murakami T, Kawarabayashi T, Abe K (2003) Alzheimer’s disease and melatonin. Int Congr Ser 1252:395–398. [cited 2018 Sep 6]. Available from: https://www.sciencedirect.com/science/article/pii/S0531513103000190 CrossRefGoogle Scholar
  28. 28.
    Srinivasan V, Pandi-Perumal S, Cardinali D, Poeggeler B, Hardeland R (2006) Melatonin in Alzheimer’s disease and other neurodegenerative disorders. Behav Brain Funct 2(1):15. [cited 2018 Sep 6]. Available from: http://behavioralandbrainfunctions.biomedcentral.com/articles/10.1186/1744-9081-2-15 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Aarabi MH, Mirhashemi SM (2017) To estimate effective antiamyloidogenic property of melatonin and fisetin and their actions to destabilize amyloid fibrils. Pak J Pharm Sci 30(5):1589–1593. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29084677 PubMedGoogle Scholar
  30. 30.
    O’Neal-Moffitt G, Delic V, Bradshaw PC, Olcese J (2015) Prophylactic melatonin significantly reduces Alzheimer’s neuropathology and associated cognitive deficits independent of antioxidant pathways in AβPP(swe)/PS1 mice. Mol Neurodegener 10:27. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26159703 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ferrari E, Arcaini A, Gornati R, Pelanconi L, Cravello L, Fioravanti M et al (2000) Pineal and pituitary-adrenocortical function in physiological aging and in senile dementia. Exp Gerontol 35(9–10):1239–1250. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11113605 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhou J-N, Liu R-Y, Kamphorst W, Hofman MA, Swaab DF (2003) Early neuropathological Alzheimer’s changes in aged individuals are accompanied by decreased cerebrospinal fluid melatonin levels. J Pineal Res 35(2):125–130. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12887656 CrossRefPubMedGoogle Scholar
  33. 33.
    Wu Y-H, Swaab DF (2005) The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res 38(3):145–152. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15725334 CrossRefPubMedGoogle Scholar
  34. 34.
    Cheng Y, Feng Z, Zhang Q, Zhang J (2006) Beneficial effects of melatonin in experimental models of Alzheimer disease. Acta Pharmacol Sin 27(2):129–139. [cited 2018 Sep 6]. Available from: http://www.nature.com/doifinder/10.1111/j.1745-7254.2006.00267.x CrossRefPubMedGoogle Scholar
  35. 35.
    Shukla M, Govitrapong P, Boontem P, Reiter RJ, Satayavivad J (2017) Mechanisms of melatonin in alleviating Alzheimer’s disease. Curr Neuropharmacol 15(7):1010–1031. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28294066 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang J, Wang Z (2006) Role of melatonin in Alzheimer-like neurodegeneration. Acta Pharmacol Sin 27(1):41–49. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16364209 CrossRefPubMedGoogle Scholar
  37. 37.
    Pappolla M, Bozner P, Soto C, Shao H, Robakis NK, Zagorski M et al (1998) Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J Biol Chem 273(13):7185–7188. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9516407 CrossRefPubMedGoogle Scholar
  38. 38.
    Lahiri DK (1999) Melatonin affects the metabolism of the beta-amyloid precursor protein in different cell types. J Pineal Res 26(3):137–146. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10231726 CrossRefPubMedGoogle Scholar
  39. 39.
    Ali T, Kim MO (2015) Melatonin ameliorates amyloid beta-induced memory deficits, tau hyperphosphorylation and neurodegeneration via PI3/Akt/GSk3β pathway in the mouse hippocampus. J Pineal Res 59(1):47–59. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25858697 CrossRefPubMedGoogle Scholar
  40. 40.
    Ionov M, Burchell V, Klajnert B, Bryszewska M, Abramov AY (2011) Mechanism of neuroprotection of melatonin against beta-amyloid neurotoxicity. Neuroscience 180:229–237. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21354274 CrossRefPubMedGoogle Scholar
  41. 41.
    Feng Z, Zhang J (2004) Protective effect of melatonin on β-amyloid-induced apoptosis in rat astroglioma c6 cells and its mechanism. Free Radic Biol Med 37(11):1790–1801. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15528038 CrossRefPubMedGoogle Scholar
  42. 42.
    Feng Z, Chang Y, Cheng Y, Zhang B, Qu Z, Qin C et al (2004) Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer’s disease. J Pineal Res 37(2):129–136. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15298672 CrossRefPubMedGoogle Scholar
  43. 43.
    Pappolla MA, Sos M, Omar RA, Bick RJ, Hickson-Bick DL, Reiter RJ et al (1997) Melatonin prevents death of neuroblastoma cells exposed to the Alzheimer amyloid peptide. J Neurosci 17(5):1683–1690. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9030627 CrossRefPubMedGoogle Scholar
  44. 44.
    Ono K, Mochizuki H, Ikeda T, Nihira T, Takasaki J, Teplow DB et al (2012) Effect of melatonin on α-synuclein self-assembly and cytotoxicity. Neurobiol Aging 33(9):2172–2185. [cited 2018 Sep 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22118903 CrossRefPubMedGoogle Scholar
  45. 45.
    Chang C-F, Huang H-J, Lee H-C, Hung K-C, Wu R-T, Lin AM-Y (2012) Melatonin attenuates kainic acid-induced neurotoxicity in mouse hippocampus via inhibition of autophagy and α-synuclein aggregation. J Pineal Res 52(3):312–321. [cited 2018 Sep 11]. Available from: http://doi.wiley.com/10.1111/j.1600-079X.2011.00945.x CrossRefPubMedGoogle Scholar
  46. 46.
    Brzecka A, Leszek J, Ashraf GM, Ejma M, Ávila-Rodriguez MF, Yarla NS et al (2018) Sleep disorders associated with Alzheimer’s disease: a perspective. Front Neurosci 12:330. [cited 2019 Mar 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29904334 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bliwise DL (2004) Sleep disorders in Alzheimer’s disease and other dementias. Clin Cornerstone 6(Suppl 1A):S16–S28. [cited 2019 Mar 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15259536 CrossRefPubMedGoogle Scholar
  48. 48.
    Mosquera RA, Koenig MK, Adejumo RB, Chevallier J, Hashmi SS, Mitchell SE et al (2014) Sleep disordered breathing in children with mitochondrial disease. Pulm Med 2014:1–8. [cited 2019 Feb 11]. Available from: http://www.hindawi.com/journals/pm/2014/467576/
  49. 49.
    Ramezani RJ, Stacpoole PW (2014) Sleep disorders associated with primary mitochondrial diseases. J Clin Sleep Med 10(11):1233–1239. [cited 2019 Feb 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25325607 PubMedPubMedCentralGoogle Scholar
  50. 50.
    Cedernaes J, Osorio RS, Varga AW, Kam K, Schiöth HB, Benedict C (2017) Candidate mechanisms underlying the association between sleep–wake disruptions and Alzheimer’s disease. Sleep Med Rev 31:102–111. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26996255 CrossRefPubMedGoogle Scholar
  51. 51.
    Musiek ES, Xiong DD, Holtzman DM (2015) Sleep, circadian rhythms, and the pathogenesis of Alzheimer disease. Exp Mol Med 47(3):e148. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25766617 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Hill VM, O’Connor RM, Sissoko GB, Irobunda IS, Leong S, Canman JC et al (2018) A bidirectional relationship between sleep and oxidative stress in Drosophila. In: Taghert P, editor. PLOS Biol 16(7):e2005206.  https://doi.org/10.1371/journal.pbio.2005206
  53. 53.
    Furio AM, Cutrera RA, Castillo Thea V, Pérez Lloret S, Riccio P, Caccuri RL et al (2002) Effect of melatonin on changes in locomotor activity rhythm of Syrian hamsters injected with beta amyloid peptide 25–35 in the suprachiasmatic nuclei. Cell Mol Neurobiol 22(5–6):699–709. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12585689 CrossRefPubMedGoogle Scholar
  54. 54.
    Cardinali DP, Furio AM, Brusco LI (2010) Clinical aspects of melatonin intervention in Alzheimer’s disease progression. Curr Neuropharmacol 8(3):218–227. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21358972 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Cardinali DP, Brusco LI, Liberczuk C, Furio AM (2002) The use of melatonin in Alzheimer’s disease. Neuro Endocrinol Lett 23(Suppl 1):20–23. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12019347 PubMedGoogle Scholar
  56. 56.
    Finsterer J (2012) Cognitive dysfunction in mitochondrial disorders. Acta Neurol Scand 126(1):1–11. [cited 2019 Feb 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22335339 CrossRefPubMedGoogle Scholar
  57. 57.
    Finsterer J (2006) Central nervous system manifestations of mitochondrial disorders. Acta Neurol Scand 114(4):217–238. [cited 2019 Feb 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16942541 CrossRefPubMedGoogle Scholar
  58. 58.
    Finsterer J (2008) Cognitive decline as a manifestation of mitochondrial disorders (mitochondrial dementia). J Neurol Sci 272(1–2):20–33. [cited 2019 Feb 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18572195 CrossRefPubMedGoogle Scholar
  59. 59.
    Petschner P, Gonda X, Baksa D, Eszlari N, Trivaks M, Juhasz G et al (2018) Genes linking mitochondrial function, cognitive impairment and depression are associated with endophenotypes serving precision medicine. Neuroscience 370:207–217. [cited 2019 Feb 11]. Available from: https://www.sciencedirect.com/science/article/pii/S0306452217307029#s0035 CrossRefPubMedGoogle Scholar
  60. 60.
    Perrig WJ, Perrig P, Stähelin HB (1997) The relation between antioxidants and memory performance in the old and very old. J Am Geriatr Soc 45(6):718–724. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9180666 CrossRefPubMedGoogle Scholar
  61. 61.
    Berr C (2000) Cognitive impairment and oxidative stress in the elderly: results of epidemiological studies. Biofactors 13(1–4):205–209. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11237183 CrossRefPubMedGoogle Scholar
  62. 62.
    Ansari MA, Scheff SW (2010) Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol 69(2):155–167. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20084018 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Cruz-Sánchez FF, Gironès X, Ortega A, Alameda F, Lafuente JV (2010) Oxidative stress in Alzheimer’s disease hippocampus: a topographical study. J Neurol Sci 299(1–2):163–167. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20863531 CrossRefPubMedGoogle Scholar
  64. 64.
    Sen A, Hongpaisan J (2018) Hippocampal microvasculature changes in association with oxidative stress in Alzheimer’s disease. Free Radic Biol Med 120:192–203. [cited 2018 Sep 5]. Available from: https://www.sciencedirect.com/science/article/pii/S0891584918301370 CrossRefPubMedGoogle Scholar
  65. 65.
    Obayashi K, Saeki K, Iwamoto J, Tone N, Tanaka K, Kataoka H et al (2015) Physiological levels of melatonin relate to cognitive function and depressive symptoms: the HEIJO-KYO Cohort. J Clin Endocrinol Metab 100(8):3090–3096. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26052727 CrossRefPubMedGoogle Scholar
  66. 66.
    Manda K, Reiter RJ (2010) Melatonin maintains adult hippocampal neurogenesis and cognitive functions after irradiation. Prog Neurobiol 90(1):60–68. [cited 2018 Sep 6]. Available from: https://www.sciencedirect.com/science/article/pii/S0301008209001701 CrossRefPubMedGoogle Scholar
  67. 67.
    Ramírez-Rodríguez G, Klempin F, Babu H, Benítez-King G, Kempermann G (2009) Melatonin modulates cell survival of new neurons in the hippocampus of adult mice. Neuropsychopharmacology 34(9):2180–2191. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19421166 CrossRefPubMedGoogle Scholar
  68. 68.
    Peng C, Hong X, Chen W, Zhang H, Tan L, Wang X et al (2017) Melatonin ameliorates amygdala-dependent emotional memory deficits in Tg2576 mice by up-regulating the CREB/c-Fos pathway. Neurosci Lett 638:76–82. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27939977 CrossRefPubMedGoogle Scholar
  69. 69.
    Hamann S, Monarch ES, Goldstein FC (2002) Impaired fear conditioning in Alzheimer’s disease. Neuropsychologia 40(8):1187–1195. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11931922 CrossRefPubMedGoogle Scholar
  70. 70.
    Huang F, Yang Z, Liu X, Li C-Q (2014) Melatonin facilitates extinction, but not acquisition or expression, of conditional cued fear in rats. BMC Neurosci 15:86. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25026909 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Bidzan L, Bidzan M, Pąchalska M (2012) Aggressive and impulsive behavior in Alzheimer’s disease and progression of dementia. Med Sci Monit 18(3):CR182–CR189. [cited 2019 Mar 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22367129 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Yu R, Topiwala A, Jacoby R, Fazel S (2019) Aggressive behaviors in Alzheimer disease and mild cognitive impairment: systematic review and meta-analysis. Am J Geriatr Psychiatry 27(3):290–300. [cited 2019 Mar 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30527275 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Lukiw WJ, Rogaev EI (2017) Genetics of aggression in Alzheimer’s disease (AD). Front Aging Neurosci 9:87. [cited 2019 Mar 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28443016 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Morgan RO, Sail KR, Snow AL, Davila JA, Fouladi NN, Kunik ME (2013) Modeling causes of aggressive behavior in patients with dementia. Gerontologist 53(5):738–747. [cited 2019 Mar 13]. Available from: http://academic.oup.com/gerontologist/article/53/5/738/590636/Modeling-Causes-of-Aggressive-Behavior-in-Patients CrossRefPubMedGoogle Scholar
  75. 75.
    Coccaro EF, Lee R, Gozal D (2016) Elevated plasma oxidative stress markers in individuals with intermittent explosive disorder and correlation with aggression in humans. Biol Psychiatry 79(2):127–135. [cited 2018 Oct 6]. Available from: https://www.sciencedirect.com/science/article/pii/S0006322314000535 CrossRefPubMedGoogle Scholar
  76. 76.
    El-Terras A, Soliman MM, Alkhedaide A, Attia HF, Alharthy A, Banaja AE (2016) Carbonated soft drinks induce oxidative stress and alter the expression of certain genes in the brains of Wistar rats. Mol Med Rep 13(4):3147–3154. [cited 2018 Oct 4]. Available from: https://www.spandidos-publications.com/10.3892/mmr.2016.4903 CrossRefPubMedGoogle Scholar
  77. 77.
    McDermott R, Tingley D, Cowden J, Frazzetto G, Johnson DDP (2009) Monoamine oxidase A gene (MAOA) predicts behavioral aggression following provocation. Proc Natl Acad Sci U S A 106(7):2118–2123. [cited 2018 Oct 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19168625 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Hira S, Saleem U, Anwar F, Ahmad B (2017) Antioxidants attenuate isolation- and L-DOPA-induced aggression in mice. Front Pharmacol, 945 8. [cited 2018 Oct 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29379435
  79. 79.
    Masaki C, Sharpley AL, Cooper CM, Godlewska BR, Singh N, Vasudevan SR et al (2016) Effects of the potential lithium-mimetic, ebselen, on impulsivity and emotional processing. Psychopharmacology 233(14):2655–2661. [cited 2018 Oct 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27256357 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Sunil G, Kumar AS, Ruchi K, Bashir A, Prabhat S (2011) Antioxidant activity in children with ADHD—a comparison in untreated and treated subjects with normal children. Int Med J Malaysia 10(1). [cited 2018 Oct 6]. Available from: https://www.researchgate.net/publication/235993446
  81. 81.
    Hambly JL, Francis K, Khan S, Gibbons KS, Walsh WJ, Lambert B et al (2017) Micronutrient therapy for violent and aggressive male youth: an open-label trial. J Child Adolesc Psychopharmacol 27(9):823–832. [cited 2019 Feb 26]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28481642 CrossRefPubMedGoogle Scholar
  82. 82.
    Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE et al (2012) Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatry 2(7):e134–e134. [cited 2018 Oct 6]. Available from: http://www.nature.com/articles/tp201261 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Tannan V, Holden JK, Zhang Z, Baranek GT, Tommerdahl MA (2008) Perceptual metrics of individuals with autism provide evidence for disinhibition. Autism Res 1(4):223–230. [cited 2018 Oct 6]. Available from: http://doi.wiley.com/10.1002/aur.34 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Fitzpatrick SE, Srivorakiat L, Wink LK, Pedapati EV, Erickson CA (2016) Aggression in autism spectrum disorder: presentation and treatment options. Neuropsychiatr Dis Treat 12:1525–1538. [cited 2018 Oct 9]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27382295 PubMedPubMedCentralGoogle Scholar
  85. 85.
    Sadek A, Berk LS, Mainess K, Daher NS (2018) Antioxidants and autism: teachers’ perceptions of behavioral changes. Adv Mind Body Med. [cited 2018 Oct 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29870399
  86. 86.
    Gordon HA, Rucklidge JJ, Blampied NM, Johnstone JM (2015) Clinically significant symptom reduction in children with attention-deficit/hyperactivity disorder treated with micronutrients: an open-label reversal design study. J Child Adolesc Psychopharmacol 25(10):783–798. [cited 2019 Feb 26]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26682999 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Navarro A, Sánchez Del Pino MJ, Gómez C, Peralta JL, Boveris A (2002) Behavioral dysfunction, brain oxidative stress, and impaired mitochondrial electron transfer in aging mice. Am J Physiol Integr Comp Physiol 282(4):R985–R992. [cited 2019 Jan 26]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11893601 CrossRefGoogle Scholar
  88. 88.
    Forster MJ, Dubey A, Dawson KM, Stutts WA, Lal H, Sohal RS (1996) Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci U S A 93(10):4765–4769. [cited 2019 Jan 26]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8643477 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Garratt M, Brooks RC (2015) A genetic reduction in antioxidant function causes elevated aggression in mice. J Exp Biol 218(Pt 2):223–227. [cited 2018 Oct 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25524980 CrossRefPubMedGoogle Scholar
  90. 90.
    O’Brien JT, Ames D, Schweitzer I, Colman P, Desmond P, Tress B (1996) Clinical and magnetic resonance imaging correlates of hypothalamic–pituitary–adrenal axis function in depression and Alzheimer’s disease. Br J Psychiatry 168(06):679–687. [cited 2019 Mar 13]. Available from: https://www.cambridge.org/core/product/identifier/S0007125000144393/type/journal_article CrossRefPubMedGoogle Scholar
  91. 91.
    Gil-Bea FJ, Aisa B, Solomon A, Solas M, del Carmen MM, Winblad B et al (2010) HPA axis dysregulation associated to apolipoprotein E4 genotype in Alzheimer’s disease. J Alzheimers Dis 22(3):829–838. [cited 2019 Mar 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20858975 CrossRefPubMedGoogle Scholar
  92. 92.
    Machado A, Herrera AJ, de Pablos RM, Espinosa-Oliva AM, Sarmiento M, Ayala A et al (2014) Chronic stress as a risk factor for Alzheimer’s disease. Rev Neurosci 25(6):785–804. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25178904 CrossRefPubMedGoogle Scholar
  93. 93.
    Lindqvist D, Fernström J, Grudet C, Ljunggren L, Träskman-Bendz L, Ohlsson L et al (2016) Increased plasma levels of circulating cell-free mitochondrial DNA in suicide attempters: associations with HPA-axis hyperactivity. Transl Psychiatry 6(12):e971–e971. [cited 2019 Feb 11]. Available from: http://www.nature.com/articles/tp2016236 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Picard M, McManus MJ, Gray JD, Nasca C, Moffat C, Kopinski PK et al (2015) Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc Natl Acad Sci U S A 112(48):E6614–E6623. [cited 2019 Feb 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26627253 CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Picard M, McEwen BS, Epel ES, Sandi C (2018) An energetic view of stress: focus on mitochondria. Front Neuroendocrinol 49:72–85. [cited 2019 Feb 11]. Available from: https://www.sciencedirect.com/science/article/pii/S0091302218300062 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Picard M, McEwen BS (2018) Psychological stress and mitochondria: a systematic review. Psychosom Med 80(2):141–153. [cited 2019 Feb 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29389736 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Kobayashi N, Machida T, Takahashi T, Takatsu H, Shinkai T, Abe K et al (2009) Elevation by oxidative stress and aging of hypothalamic–pituitary–adrenal activity in rats and its prevention by vitamin E. J Clin Biochem Nutr 45(2):207–213. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19794930 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Spiers JG, Chen H-JC, Sernia C, Lavidis NA (2014) Activation of the hypothalamic–pituitary–adrenal stress axis induces cellular oxidative stress. Front Neurosci 8:456. [cited 2019 Feb 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25646076 PubMedGoogle Scholar
  99. 99.
    Romijn HJ (1978) The pineal, a tranquillizing organ? Life Sci 23(23):2257–2273. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/366320 CrossRefPubMedGoogle Scholar
  100. 100.
    Zheng C, Zhou X-W, Wang J-Z (2016) The dual roles of cytokines in Alzheimer’s disease: update on interleukins, TNF-α, TGF-β and IFN-γ. Transl Neurodegener 5(1):7. [cited 2019 Mar 14]. Available from: http://translationalneurodegeneration.biomedcentral.com/articles/10.1186/s40035-016-0054-4 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Swardfager W, Lanctôt K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68(10):930–941. [cited 2019 Mar 14]. Available from: https://www.sciencedirect.com/science/article/pii/S0006322310006013 CrossRefPubMedGoogle Scholar
  102. 102.
    Domingues C, da Cruz E Silva OAB, Henriques AG (2017) Impact of cytokines and chemokines on Alzheimer’s disease neuropathological hallmarks. Curr Alzheimer Res 14(8):870–882. [cited 2019 Mar 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28317487 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Ferger AI, Campanelli L, Reimer V, Muth KN, Merdian I, Ludolph AC et al (2010) Effects of mitochondrial dysfunction on the immunological properties of microglia. J Neuroinflammation 7(1):45. [cited 2019 Feb 12]. Available from: http://jneuroinflammation.biomedcentral.com/articles/10.1186/1742-2094-7-45 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Park J, Choi H, Min J-S, Park S-J, Kim J-H, Park H-J et al (2013) Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells. J Neurochem 127(2):221–232. [cited 2019 Feb 12]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23815397 CrossRefPubMedGoogle Scholar
  105. 105.
    Fischer R, Maier O (2015) Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxidative Med Cell Longev 2015:1–18. [cited 2018 Sep 5]. Available from: http://www.hindawi.com/journals/omcl/2015/610813/
  106. 106.
    Prasad KN (2017) Oxidative stress and pro-inflammatory cytokines may act as one of the signals for regulating microRNAs expression in Alzheimer’s disease. Mech Ageing Dev 162:63–71. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27964992 CrossRefPubMedGoogle Scholar
  107. 107.
    Solleiro-Villavicencio H, Rivas-Arancibia S (2018) Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4+ T cells in neurodegenerative diseases. Front Cell Neurosci 12:114. [cited 2019 Mar 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29755324 CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    de Oliveira BF, Veloso CA, Nogueira-Machado JA, de Moraes EN, dos Santos RR, Cintra MTG et al (2012) Ascorbic acid, alpha-tocopherol, and beta-carotene reduce oxidative stress and proinflammatory cytokines in mononuclear cells of Alzheimer’s disease patients. Nutr Neurosci 15(6):244–251. [cited 2019 Mar 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22710805 CrossRefPubMedGoogle Scholar
  109. 109.
    Favero G, Franceschetti L, Bonomini F, Rodella LF, Rezzani R (2017) Melatonin as an anti-inflammatory agent modulating inflammasome activation. Int J Endocrinol 2017:1–13. [cited 2018 Sep 7]. Available from: https://www.hindawi.com/journals/ije/2017/1835195/
  110. 110.
    Mozaffari S, Hasani-Ran S, Abdollahi M (2012) The mechanisms of positive effects of melatonin in dyslipidemia: a systematic review of animal and human studies. Int J Pharmacol 8(6):496–509. [cited 2018 Sep 7]. Available from: http://www.scialert.net/abstract/?doi=ijp.2012.496.509 CrossRefGoogle Scholar
  111. 111.
    Mauriz JL, Collado PS, Veneroso C, Reiter RJ, González-Gallego J (2013) A review of the molecular aspects of melatonin’s anti-inflammatory actions: recent insights and new perspectives. J Pineal Res 54(1):1–14. [cited 2018 Sep 7]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22725668 CrossRefPubMedGoogle Scholar
  112. 112.
    Yu G-M, Kubota H, Okita M, Maeda T (2017) The anti-inflammatory and antioxidant effects of melatonin on LPS-stimulated bovine mammary epithelial cells. In: Scavone C, editor. PLoS One 12(5):e0178525.  https://doi.org/10.1371/journal.pone.0178525
  113. 113.
    Lyketsos CG, Carrillo MC, Ryan JM, Khachaturian AS, Trzepacz P, Amatniek J et al (2011) Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement 7(5):532–539. [cited 2019 Mar 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21889116 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Ravetz RS (1999) Psychiatric disorders associated with Alzheimer’s disease. J Am Osteopath Assoc 99(9 Suppl):S13–S16. [cited 2019 Mar 13] Available from: http://www.ncbi.nlm.nih.gov/pubmed/10730508 CrossRefPubMedGoogle Scholar
  115. 115.
    Wallace DC (2017) A mitochondrial etiology of neuropsychiatric disorders. JAMA Psychiatry 74(9):863. [cited 2019 Feb 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28614546 CrossRefPubMedGoogle Scholar
  116. 116.
    Pei L, Wallace DC (2018) Mitochondrial etiology of neuropsychiatric disorders. Biol Psychiatry 83(9):722–730. [cited 2019 Feb 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29290371 CrossRefPubMedGoogle Scholar
  117. 117.
    Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H, Myers RM et al (2008) Mitochondrial involvement in psychiatric disorders. Ann Med 40(4):281–295. [cited 2019 Feb 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18428021 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Anglin RE, Garside SL, Tarnopolsky MA, Mazurek MF, Rosebush PI (2012) The psychiatric manifestations of mitochondrial disorders. J Clin Psychiatry 73(04):506–512. [cited 2019 Feb 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22579150 CrossRefPubMedGoogle Scholar
  119. 119.
    Kato T (2007) Mitochondrial dysfunction as the molecular basis of bipolar disorder. CNS Drugs 21(1):1–11. [cited 2019 Feb 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17190525 CrossRefPubMedGoogle Scholar
  120. 120.
    Torrell H, Montaña E, Abasolo N, Roig B, Gaviria AM, Vilella E et al (2013) Mitochondrial DNA (mtDNA) in brain samples from patients with major psychiatric disorders: gene expression profiles, MtDNA content and presence of the MtDNA common deletion. Am J Med Genet B Neuropsychiatr Genet 162(2):213–223. [cited 2019 Feb 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23355257 CrossRefGoogle Scholar
  121. 121.
    Marazziti D, Baroni S, Picchetti M, Landi P, Silvestri S, Vatteroni E et al (2012) Psychiatric disorders and mitochondrial dysfunctions. Eur Rev Med Pharmacol Sci 16(2):270–275. [cited 2019 Feb 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22428481 PubMedGoogle Scholar
  122. 122.
    Jou S-H, Chiu N-Y, Liu C-S (2009) Mitochondrial dysfunction and psychiatric disorders. Chang Gung Med J 32(4):370–379. [cited 2019 Feb 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19664343 PubMedGoogle Scholar
  123. 123.
    Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M et al (2012) Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci 13(5):293–307. [cited 2019 Feb 16]. Available from: http://www.nature.com/articles/nrn3229 CrossRefPubMedGoogle Scholar
  124. 124.
    Anglin RE, Tarnopolsky MA, Mazurek MF, Rosebush PI (2012) The psychiatric presentation of mitochondrial disorders in adults. J Neuropsychiatr Clin Neurosci 24(4):394–409. [cited 2019 Feb 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23224446 CrossRefGoogle Scholar
  125. 125.
    Devaraju P, Zakharenko SS (2017) Mitochondria in complex psychiatric disorders: lessons from mouse models of 22q11.2 deletion syndrome. BioEssays 39(2):1600177. [cited 2019 Feb 16]. Available from: http://doi.wiley.com/10.1002/bies.201600177 CrossRefGoogle Scholar
  126. 126.
    Smaga I, Niedzielska E, Gawlik M, Moniczewski A, Krzek J, Przegaliński E et al (2015) Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 2. Depression, anxiety, schizophrenia and autism. Pharmacol Rep 67(3):569–580. [cited 2019 Feb 16]. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1734114014003867 CrossRefPubMedGoogle Scholar
  127. 127.
    Ng F, Berk M, Dean O, Bush AI (2008) Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. Int J Neuropsychopharmacol 11(06):851–876. [cited 2019 Feb 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18205981 CrossRefPubMedGoogle Scholar
  128. 128.
    Moniczewski A, Gawlik M, Smaga I, Niedzielska E, Krzek J, Przegaliński E et al (2015) Oxidative stress as an etiological factor and a potential treatment target of psychiatric disorders. Part 1. Chemical aspects and biological sources of oxidative stress in the brain. Pharmacol Rep 67(3):560–568. [cited 2019 Feb 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25933970 CrossRefPubMedGoogle Scholar
  129. 129.
    Hassan W, Noreen H, Castro-Gomes V, Mohammadzai I, da Rocha JBT, Landeira-Fernandez J (2016) Association of oxidative stress with psychiatric disorders. Curr Pharm Des 22(20):2960–2974. [cited 2019 Feb 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26951103 CrossRefPubMedGoogle Scholar
  130. 130.
    Salim S (2014) Oxidative stress and psychological disorders. Curr Neuropharmacol 12(2):140–147. [cited 2019 Feb 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24669208 CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Tsaluchidu S, Cocchi M, Tonello L, Puri BK (2008) Fatty acids and oxidative stress in psychiatric disorders. BMC Psychiatry 8(S1):S5. [cited 2019 Feb 16]. Available from: https://bmcpsychiatry.biomedcentral.com/articles/10.1186/1471-244X-8-S1-S5 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Nunomura A, Tamaoki T, Motohashi N (2014) Role of oxidative stress in the pathophysiology of neuropsychiatric disorders. Seishin Shinkeigaku Zasshi 116(10):842–858. [cited 2019 mar 15]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25672211 PubMedGoogle Scholar
  133. 133.
    Stanika RI, Pivovarova NB, Brantner CA, Watts CA, Winters CA, Andrews SB (2009) Coupling diverse routes of calcium entry to mitochondrial dysfunction and glutamate excitotoxicity. Proc Natl Acad Sci 106(24):9854–9859. [cited 2019 Feb 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19482936 CrossRefPubMedGoogle Scholar
  134. 134.
    Trist BG, Hare DJ, Double KL (2018) A proposed mechanism for neurodegeneration in movement disorders characterized by metal dyshomeostasis and oxidative stress. Cell Chem Biol 25(7):807–816. [cited 2019 Feb 12]. Available from: https://www.sciencedirect.com/science/article/pii/S245194561830151X CrossRefPubMedGoogle Scholar
  135. 135.
    Wang W, Zhang F, Li L, Tang F, Siedlak SL, Fujioka H et al (2015) MFN2 couples glutamate excitotoxicity and mitochondrial dysfunction in motor neurons. J Biol Chem 290(1):168–182. [cited 2019 Feb 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25416777 CrossRefPubMedGoogle Scholar
  136. 136.
    Butterfield DA, Pocernich CB (2003) The glutamatergic system and Alzheimer’s disease: therapeutic implications. CNS Drugs 17(9):641–652. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12828500 CrossRefPubMedGoogle Scholar
  137. 137.
    Butterfield DA (2004) The glutamatergic system in Alzheimer’s Disease brain: dysfunction associated with amyloid β-peptide and oxidative stress. In: Excitotoxicity in neurological diseases. Springer US, Boston, p 251–62. [cited 2018 Sep 5]. Available from: http://link.springer.com/10.1007/978-1-4419-8959-8_14
  138. 138.
    Escames G, Leon J, Lopez LC, Acuna-Castroviejo D (2004) Mechanisms of N-methyl-d-aspartate receptor inhibition by melatonin in the rat striatum. J Neuroendocrinol 16(11):929–935. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15584934 CrossRefPubMedGoogle Scholar
  139. 139.
    Benítez-King G, Ríos A, Martínez A, Antón-Tay F (1996) In vitro inhibition of Ca2+/calmodulin-dependent kinase II activity by melatonin. Biochim Biophys Acta 1290(2):191–196. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8645723 CrossRefPubMedGoogle Scholar
  140. 140.
    Paula-Lima AC, Louzada PR, De Mello FG, Ferreira ST (2003) Neuroprotection against Abeta and glutamate toxicity by melatonin: are GABA receptors involved? Neurotox Res 5(5):323–327. [cited 2018 Sep 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14715451 CrossRefPubMedGoogle Scholar
  141. 141.
    Annweiler C, Llewellyn DJ, Beauchet O (2013) Low serum vitamin D concentrations in Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 33(3):659–674. [cited 2018 Sep 3]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23042216 CrossRefPubMedGoogle Scholar
  142. 142.
    Littlejohns TJ, Henley WE, Lang IA, Annweiler C, Beauchet O, Chaves PHM et al (2014) Vitamin D and the risk of dementia and Alzheimer disease. Neurology 83(10):920–928. [cited 2018 Sep 3]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25098535 CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Grimm MOW, Thiel A, Lauer AA, Winkler J, Lehmann J, Regner L et al (2017) Vitamin D and its analogues decrease amyloid-β (Aβ) formation and increase Aβ-degradation. Int J Mol Sci 18(12). [cited 2018 Sep 3]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29257109
  144. 144.
    Dursun E, Gezen-Ak D (2017) Vitamin D receptor is present on the neuronal plasma membrane and is co-localized with amyloid precursor protein, ADAM10 or Nicastrin. In: Lakshmana MK, editor. PLoS One 12(11):e0188605.  https://doi.org/10.1371/journal.pone.0188605
  145. 145.
    Dursun E, Gezen-Ak D, Yilmazer S (2011) A novel perspective for Alzheimer’s disease: vitamin D receptor suppression by amyloid-β and preventing the amyloid-β induced alterations by vitamin D in cortical neurons. J Alzheimers Dis 23(2):207–219. [cited 2018 Sep 3]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20966550 CrossRefPubMedGoogle Scholar
  146. 146.
    Gezen-Ak D, Atasoy IL, Candaş E, Alaylioglu M, Yılmazer S, Dursun E (2017) Vitamin D receptor regulates amyloid beta 1–42 production with protein disulfide isomerase A3. ACS Chem Neurosci 8(10):2335–2346. [cited 2018 Sep 3]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28707894 CrossRefPubMedGoogle Scholar
  147. 147.
    Rcom-H’cheo-Gauthier AN, Meedeniya ACB, Pountney DL (2017) Calcipotriol inhibits α-synuclein aggregation in SH-SY5Y neuroblastoma cells by a calbindin-D28k-dependent mechanism. J Neurochem 141(2):263–274. [cited 2018 Sep 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28164279 CrossRefPubMedGoogle Scholar
  148. 148.
    Ricca C, Aillon A, Bergandi L, Alotto D, Castagnoli C, Silvagno F (2018) Vitamin D receptor is necessary for mitochondrial function and cell health. Int J Mol Sci 19(6). [cited 2018 Sep 9]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29874855
  149. 149.
    Pfeffer PE, Lu H, Mann EH, Chen Y-H, Ho T-R, Cousins DJ et al (2018) Effects of vitamin D on inflammatory and oxidative stress responses of human bronchial epithelial cells exposed to particulate matter. In: Loukides S, editor. PLoS One 13(8):e0200040.  https://doi.org/10.1371/journal.pone.0200040
  150. 150.
    Ke C-Y, Yang F-L, Wu W-T, Chung C-H, Lee R-P, Yang W-T et al (2016) Vitamin D3 reduces tissue damage and oxidative stress caused by exhaustive exercise. Int J Med Sci 13(2):147–153. [cited 2019 Mar 15]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26941574 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Sloka JS, Phillips P-WEM, Stefanelli M, Joyce C (2005) Co-occurrence of autoimmune thyroid disease in a multiple sclerosis cohort. J Autoimmune Dis 2:9. [cited 2018 Jul 21]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16280086 CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Tan ZS, Vasan RS (2009) Thyroid function and Alzheimer’s disease. J Alzheimers Dis 16(3):503–507. [cited 2018 Sep 7]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19276542 CrossRefPubMedGoogle Scholar
  153. 153.
    O’Barr SA, Oh JS, Ma C, Brent GA, Schultz JJ (2006) Thyroid hormone regulates endogenous amyloid-β precursor protein gene expression and processing in both in vitro and in vivo models. Thyroid 16(12):1207–1213. [cited 2018 Sep 7]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17199430 CrossRefPubMedGoogle Scholar
  154. 154.
    Belakavadi M, Dell J, Grover GJ, Fondell JD (2011) Thyroid hormone suppression of β-amyloid precursor protein gene expression in the brain involves multiple epigenetic regulatory events. Mol Cell Endocrinol 339(1–2):72–80. [cited 2018 Sep 7]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21458529 CrossRefPubMedGoogle Scholar
  155. 155.
    Contreras-Jurado C, Pascual A (2012) Thyroid hormone regulation of APP (β-amyloid precursor protein) gene expression in brain and brain cultured cells. Neurochem Int 60(5):484–487. [cited 2018 Sep 7]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22349409 CrossRefPubMedGoogle Scholar
  156. 156.
    Agarwal R, Kushwaha S, Chhillar N, Kumar A, Dubey DK, Tripathi CB (2013) A cross-sectional study on thyroid status in North Indian elderly outpatients with dementia. Ann Indian Acad Neurol 16(3):333–337. [cited 2018 Sep 7]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24101811 CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Ghenimi Rahab N, Alfos S, Redonnet A, Higueret P, Pallet V, Enderlin V (2010) Adult-onset hypothyroidism induces the amyloidogenic pathway of APP processing in the rat hippocampus. J Neuroendocrinol 22(8):951–959. [cited 2018 Sep 7]. Available from: http://doi.wiley.com/10.1111/j.1365-2826.2010.02002.x Google Scholar
  158. 158.
    Luo L, Yano N, Mao Q, Jackson IMD, Stopa EG (2002) Thyrotropin releasing hormone (TRH) in the hippocampus of Alzheimer patients. J Alzheimers Dis 4(2):97–103. [cited 2018 Sep 7]. Available from: http://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JAD-2002-4204 CrossRefPubMedGoogle Scholar
  159. 159.
    Luo L, Stopa EG (2004) Thyrotropin releasing hormone inhibits tau phosphorylation by dual signaling pathways in hippocampal neurons. J Alzheimers Dis 6(5):527–536. [cited 2018 Sep 7]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15505375 CrossRefPubMedGoogle Scholar
  160. 160.
    Grimm A, Biliouris EE, Lang UE, Götz J, Mensah-Nyagan AG, Eckert A (2016) Sex hormone-related neurosteroids differentially rescue bioenergetic deficits induced by amyloid-β or hyperphosphorylated tau protein. Cell Mol Life Sci 73(1):201–215. [cited 2018 Sep 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26198711 CrossRefPubMedGoogle Scholar
  161. 161.
    Hirohata M, Ono K, Morinaga A, Ikeda T, Yamada M (2009) Anti-aggregation and fibril-destabilizing effects of sex hormones on α-synuclein fibrils in vitro. Exp Neurol 217(2):434–439. [cited 2018 Sep 11]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19289119 CrossRefPubMedGoogle Scholar
  162. 162.
    Levin-Allerhand JA, Lominska CE, Wang J, Smith JD (2002) 17Alpha-estradiol and 17beta-estradiol treatments are effective in lowering cerebral amyloid-beta levels in AbetaPPSWE transgenic mice. J Alzheimers Dis 4(6):449–457. [cited 2018 Sep 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12515896 CrossRefPubMedGoogle Scholar
  163. 163.
    Jayaraman A, Carroll JC, Morgan TE, Lin S, Zhao L, Arimoto JM et al (2012) 17β-estradiol and progesterone regulate expression of β-amyloid clearance factors in primary neuron cultures and female rat brain. Endocrinology 153(11):5467–5479. [cited 2018 Sep 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22962256 CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Wang C, Zhang F, Jiang S, Siedlak SL, Shen L, Perry G et al (2016) Estrogen receptor-α is localized to neurofibrillary tangles in Alzheimer’s disease. Sci Rep 6(1):20352. [cited 2018 Sep 8]. Available from: http://www.nature.com/articles/srep20352 CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Villa A, Vegeto E, Poletti A, Maggi A (2016) Estrogens, neuroinflammation, and neurodegeneration. Endocr Rev 37(4):372–402. [cited 2018 Sep 9]. Available from: https://academic.oup.com/edrv/article-lookup/doi/10.1210/er.2016-1007 CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Brown CM, Mulcahey TA, Filipek NC, Wise PM (2010) Production of proinflammatory cytokines and chemokines during neuroinflammation: novel roles for estrogen receptors α and β. Endocrinology 151(10):4916–4925. [cited 2018 Sep 9]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20685874 CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Dang TNT, Dobson-Stone C, Glaros EN, Kim WS, Hallupp M, Bartley L et al (2013) Endogenous progesterone levels and frontotemporal dementia: modulation of TDP-43 and Tau levels in vitro and treatment of the A315T TARDBP mouse model. Dis Model Mech 6(5):1198–1204. [cited 2018 Sep 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23798570 CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Webber KM, Perry G, Smith MA, Casadesus G (2007) The contribution of luteinizing hormone to Alzheimer disease pathogenesis. Clin Med Res 5(3):177–183. [cited 2018 Sep 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18056027 CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Verdile G, Asih PR, Barron AM, Wahjoepramono EJ, Ittner LM, Martins RN (2015) The impact of luteinizing hormone and testosterone on beta amyloid (Aβ) accumulation: animal and human clinical studies. Horm Behav 76:81–90. [cited 2018 Sep 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26122291 CrossRefPubMedGoogle Scholar
  170. 170.
    Lv W, Du N, Liu Y, Fan X, Wang Y, Jia X et al (2016) Low testosterone level and risk of Alzheimer’s disease in the elderly men: a systematic review and meta-analysis. Mol Neurobiol 53(4):2679–2684. [cited 2018 Sep 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26154489 CrossRefPubMedGoogle Scholar
  171. 171.
    Rosario ER, Chang L, Head EH, Stanczyk FZ, Pike CJ (2011) Brain levels of sex steroid hormones in men and women during normal aging and in Alzheimer’s disease. Neurobiol Aging 32(4):604–613. [cited 2018 Sep 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19428144 CrossRefPubMedGoogle Scholar
  172. 172.
    Pike CJ (2001) Testosterone attenuates beta-amyloid toxicity in cultured hippocampal neurons. Brain Res 919(1):160–165. [cited 2018 Sep 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11689174 CrossRefPubMedGoogle Scholar
  173. 173.
    Rosario ER, Carroll JC, Pike CJ (2012) Evaluation of the effects of testosterone and luteinizing hormone on regulation of β-amyloid in male 3xTg-AD mice. Brain Res 1466:137–145. [cited 2018 Sep 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22587890 CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Gouras GK, Xu H, Gross RS, Greenfield JP, Hai B, Wang R et al (2000) Testosterone reduces neuronal secretion of Alzheimer’s beta-amyloid peptides. Proc Natl Acad Sci U S A 97(3):1202–1205. [cited 2018 Sep 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10655508 CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Nead KT, Gaskin G, Chester C, Swisher-McClure S, Dudley JT, Leeper NJ et al (2016) Androgen deprivation therapy and future Alzheimer’s disease risk. J Clin Oncol 34(6):566–571. [cited 2018 Sep 8]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26644522 CrossRefPubMedGoogle Scholar
  176. 176.
    Menzies KJ, Robinson BH, Hood DA (2009) Effect of thyroid hormone on mitochondrial properties and oxidative stress in cells from patients with mtDNA defects. Am J Physiol 296(2):C355–C362. [cited 2018 Sep 9]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19036942 CrossRefGoogle Scholar
  177. 177.
    Karbownik-Lewińska M, Kokoszko-Bilska A (2012) Oxidative damage to macromolecules in the thyroid—experimental evidence. Thyroid Res 5(1):25. [cited 2018 Jul 21]. Available from: http://thyroidresearchjournal.biomedcentral.com/articles/10.1186/1756-6614-5-25 CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Dang CV (2012) Links between metabolism and cancer. Genes Dev 26(9):877–890. [cited 2018 Jul 20]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22549953 CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Chakrabarti SK, Ghosh S, Banerjee S, Mukherjee S, Chowdhury S (2016) Oxidative stress in hypothyroid patients and the role of antioxidant supplementation. Indian J Endocrinol Metab 20(5):674–678. [cited 2018 Jun 30]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27730079 CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Velarde MC (2014) Mitochondrial and sex steroid hormone crosstalk during aging. Longev Heal 3(1):2. [cited 2018 Sep 9]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24495597 CrossRefGoogle Scholar
  181. 181.
    Barron AM, Fuller SJ, Verdile G, Martins RN (2006) Reproductive hormones modulate oxidative stress in Alzheimer’s disease. Antioxid Redox Signal 8(11–12):2047–2059. [cited 2018 Sep 9]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17034349 CrossRefPubMedGoogle Scholar
  182. 182.
    Abou-Seif MAM, Youssef A-A (2001) Oxidative stress and male IGF-1, gonadotropin and related hormones in diabetic patients. Clin Chem Lab Med 39(7):618–623. [cited 2018 Sep 9]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11522108 CrossRefPubMedGoogle Scholar
  183. 183.
    Túnez I, Feijóo M, Collado JA, Medina FJ, Peña J, Muñoz M del C et al (2007) Effect of testosterone on oxidative stress and cell damage induced by 3-nitropropionic acid in striatum of ovariectomized rats. Life Sci 80(13):1221–1227. [cited 2018 Jul 22]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17266993 CrossRefPubMedGoogle Scholar
  184. 184.
    Marin DP, Bolin AP, dos Santos R de CM, Curi R, Otton R (2010) Testosterone suppresses oxidative stress in human neutrophils. Cell Biochem Funct 28(5):394–402. [cited 2018 Jul 22]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20589735 CrossRefPubMedGoogle Scholar
  185. 185.
    Borrás C, Gambini J, López-Grueso R, Pallardó FV, Viña J (2010) Direct antioxidant and protective effect of estradiol on isolated mitochondria. Biochim Biophys Acta Mol basis Dis 1802(1):205–211. [cited 2018 Jul 21]. Available from: https://www.sciencedirect.com/science/article/pii/S092544390900218X CrossRefGoogle Scholar
  186. 186.
    Abd-Allah ARA, El-Sayed ESM, Abdel-Wahab MH, Hamada FMA (2003) Effect of melatonin on estrogen and progesterone receptors in relation to uterine contraction in rats. Pharmacol Res 47(4):349–354. [cited 2018 Sep 9]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12644393 CrossRefPubMedGoogle Scholar
  187. 187.
    Kripke DF, Kline LE, Shadan FF, Dawson A, Poceta JS, Elliott JA (2006) Melatonin effects on luteinizing hormone in postmenopausal women: a pilot clinical trial NCT00288262. BMC Womens Health 6(1):8. [cited 2018 Sep 9]. Available from: http://bmcwomenshealth.biomedcentral.com/articles/10.1186/1472-6874-6-8 CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Karbownik M, Lewinski A (2003) The role of oxidative stress in physiological and pathological processes in the thyroid gland; possible involvement in pineal–thyroid interactions. Neuro Endocrinol Lett 24(5):293–303. [cited 2018 Sep 9]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14647000 PubMedGoogle Scholar
  189. 189.
    Garcia-Marin R, Fernandez-Santos JM, Morillo-Bernal J, Gordillo-Martinez F, Vazquez-Roman V, Utrilla JC et al (2015) Melatonin in the thyroid gland: regulation by thyroid-stimulating hormone and role in thyroglobulin gene expression. J Physiol Pharmacol 66(5):643–652. [cited 2018 Sep 9]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26579570 PubMedGoogle Scholar
  190. 190.
    Pappolla MA, Smith MA, Bryant-Thomas T, Bazan N, Petanceska S, Perry G et al (2002) Cholesterol, oxidative stress, and Alzheimer’s disease: expanding the horizons of pathogenesis. Free Radic Biol Med 33(2):173–181. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12106813 CrossRefPubMedGoogle Scholar
  191. 191.
    Nelson TJ, Alkon DL (2005) Oxidation of cholesterol by amyloid precursor protein and β-amyloid peptide. J Biol Chem 280(8):7377–7387. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15591071 CrossRefPubMedGoogle Scholar
  192. 192.
    de Oliveira J, Hort MA, Moreira ELG, Glaser V, Ribeiro-do-Valle RM, Prediger RD et al (2011) Positive correlation between elevated plasma cholesterol levels and cognitive impairments in LDL receptor knockout mice: relevance of cortico-cerebral mitochondrial dysfunction and oxidative stress. Neuroscience 197:99–106. [cited 2019 Feb 22]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21945034 CrossRefPubMedGoogle Scholar
  193. 193.
    de Oliveira J, Moreira ELG, Mancini G, Hort MA, Latini A, Ribeiro-do-Valle RM et al (2013) Diphenyl diselenide prevents cortico-cerebral mitochondrial dysfunction and oxidative stress induced by hypercholesterolemia in LDL receptor knockout mice. Neurochem Res 38(10):2028–2036. [cited 2019 Feb 22]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23881289 CrossRefPubMedGoogle Scholar
  194. 194.
    Bezerra OC, França CM, Rocha JA, Neves GA, Souza PRM, Teixeira Gomes M et al (2017) Cholinergic stimulation improves oxidative stress and inflammation in experimental myocardial infarction. Sci Rep 7(1):13687. [cited 2018 Sep 5]. Available from: http://www.nature.com/articles/s41598-017-14021-8 CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Zampagni M, Wright D, Cascella R, D’Adamio G, Casamenti F, Evangelisti E et al (2012) Novel S-acyl glutathione derivatives prevent amyloid oxidative stress and cholinergic dysfunction in Alzheimer disease models. Free Radic Biol Med 52(8):1362–1371. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22326489 CrossRefPubMedGoogle Scholar
  196. 196.
    Alford S, Patel D, Perakakis N, Mantzoros CS (2018) Obesity as a risk factor for Alzheimer’s disease: weighing the evidence. Obes Rev 19(2):269–280. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29024348 CrossRefPubMedGoogle Scholar
  197. 197.
    Sato N, Takeda S, Uchio-Yamada K, Ueda H, Fujisawa T, Rakugi H et al (2011) Role of insulin signaling in the interaction between Alzheimer disease and diabetes mellitus: a missing link to therapeutic potential. Curr Aging Sci 4(2):118–127. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21235496 CrossRefPubMedGoogle Scholar
  198. 198.
    McGuire MJ, Ishii M (2016) Leptin dysfunction and Alzheimer’s disease: evidence from cellular, animal, and human studies. Cell Mol Neurobiol 36(2):203–217. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26993509 CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Bournat JC, Brown CW (2010) Mitochondrial dysfunction in obesity. Curr Opin Endocrinol Diabetes Obes 17(5):446–452. [cited 2019 Mar 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20585248 CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Tiwari BK, Pandey KB, Abidi AB, Rizvi SI (2013) Markers of oxidative stress during diabetes mellitus. J Biomarkers 2013:1–8. [cited 2018 Sep 5]. Available from: https://www.hindawi.com/archive/2013/378790/ CrossRefGoogle Scholar
  201. 201.
    Matsuda M, Shimomura I (2013) Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract 7(5):e330–e341. [cited 2018 Sep 5]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1871403X13000434 CrossRefPubMedGoogle Scholar
  202. 202.
    Calderón-Garcidueñas L (2016) Smoking and cerebral oxidative stress and air pollution: a dreadful equation with particulate matter involved and one more powerful reason not to smoke anything! J Alzheimers Dis 54(1):109–112. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27447427 CrossRefPubMedGoogle Scholar
  203. 203.
    Durazzo TC, Mattsson N, Weiner MW (2014) Alzheimer’s Disease Neuroimaging Initiative. Smoking and increased Alzheimer’s disease risk: a review of potential mechanisms. Alzheimers Dement 10(3 Suppl):S122–S145. [cited 2019 Mar 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24924665 CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Meyer JN, Leung MCK, Rooney JP, Sendoel A, Hengartner MO, Kisby GE et al (2013) Mitochondria as a target of environmental toxicants. Toxicol Sci 134(1):1–17. [cited 2019 Mar 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23629515 CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Jia G, Aroor AR, Martinez-Lemus LA, Sowers JR (2015) Mitochondrial functional impairment in response to environmental toxins in the cardiorenal metabolic syndrome. Arch Toxicol 89(2):147–153. [cited 2019 Mar 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25559775 CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23(1):134–147. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9165306 CrossRefPubMedGoogle Scholar
  207. 207.
    Honda K, Casadesus G, Petersen RB, Perry G, Smith MA (2004) Oxidative stress and redox-active iron in Alzheimer’s disease. Ann N Y Acad Sci 1012:179–182. [cited 2018 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15105265 CrossRefPubMedGoogle Scholar
  208. 208.
    Meek PD, McKeithan K, Schumock GT (1998) Economic considerations in Alzheimer’s disease. Pharmacotherapy 18(2 Pt 2):68–73. discussion 79–82. [cited 2018 Nov 17]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9543467 PubMedGoogle Scholar
  209. 209.
    Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191. [cited 2018 Sep 1]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19595937 CrossRefGoogle Scholar
  210. 210.
    2013 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2013;9(2):208–45. [cited 2018 Sep 1]. Available from: https://www.sciencedirect.com/science/article/pii/S1552526013000769
  211. 211.
    Alzheimer’s Disease International (2010) World Alzheimer Report 2010: The Global Economic Impact of Dementia. [cited 2018 Sep 1]. Available from: www.deutsche-alzheimer.de
  212. 212.
    Momiyama Y (2014) Serum coenzyme Q10 levels as a predictor of dementia in a Japanese general population. Atherosclerosis 237(2):433–434. [cited 2019 Mar 14]. Available from: https://www.sciencedirect.com/science/article/pii/S0021915014014105 CrossRefPubMedGoogle Scholar
  213. 213.
    De Carvalho Vidigal F, Guedes Cocate P, Pereira LG, De Cássia R, Alfenas G (2012) The role of hyperglycemia in the induction of oxidative stress and inflammatory process. Nutr Hosp 27(5):1391–1398. [cited 2018 Aug 5]. Available from: https://pdfs.semanticscholar.org/9e0f/ee3a31fff080d979bb66eac53c669d3d0e27.pdf PubMedGoogle Scholar
  214. 214.
    Dai J, Jones DP, Goldberg J, Ziegler TR, Bostick RM, Wilson PW et al (2008) Association between adherence to the Mediterranean diet and oxidative stress. Am J Clin Nutr 88(5):1364–1370. [cited 2019 Feb 18]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18996873 PubMedPubMedCentralGoogle Scholar
  215. 215.
    Mitjavila MT, Fandos M, Salas-Salvadó J, Covas M-I, Borrego S, Estruch R et al (2013) The Mediterranean diet improves the systemic lipid and DNA oxidative damage in metabolic syndrome individuals. A randomized, controlled, trial. Clin Nutr 32(2):172–178. [cited 2019 Feb 18]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22999065 CrossRefPubMedGoogle Scholar
  216. 216.
    Scarmeas N, Stern Y, Mayeux R, Luchsinger JA (2006) Mediterranean diet, Alzheimer disease, and vascular mediation. Arch Neurol 63(12):1709. [cited 2019 Mar 14]. Available from: http://archneur.jamanetwork.com/article.aspx?doi=10.1001/archneur.63.12.noc60109 CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Scarmeas N, Luchsinger JA, Mayeux R, Stern Y (2007) Mediterranean diet and Alzheimer disease mortality. Neurology 69(11):1084–1093. [cited 2019 Mar 14]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17846408 CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Scarmeas N, Stern Y, Tang M-X, Mayeux R, Luchsinger JA (2006) Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol 59(6):912. [cited 2019 Mar 14]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024594/?_escaped_fragment_=po=48.2143CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Verghese J, Lipton RB, Katz MJ, Hall CB, Derby CA, Kuslansky G et al (2003) Leisure activities and the risk of dementia in the elderly. N Engl J Med 348(25):2508–2516. [cited 2018 Sep 10]. Available from: http://www.nejm.org/doi/abs/10.1056/NEJMoa022252 CrossRefPubMedGoogle Scholar
  220. 220.
    Uchida S, Kawashima R (2008) Reading and solving arithmetic problems improves cognitive functions of normal aged people: a randomized controlled study. Age (Dordr) 30(1):21–29. [cited 2019 Feb 18]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19424870 CrossRefGoogle Scholar
  221. 221.
    Whitworth-Turner C, Di Michele R, Muir I, Gregson W, Drust B (2017) A shower before bedtime may improve the sleep onset latency of youth soccer players. Eur J Sport Sci 17(9):1119–1128. [cited 2018 Sep 1]. Available from: https://www.tandfonline.com/doi/full/10.1080/17461391.2017.1346147 CrossRefPubMedGoogle Scholar
  222. 222.
    Matthews FE, Arthur A, Barnes LE, Bond J, Jagger C, Robinson L et al (2013) A two-decade comparison of prevalence of dementia in individuals aged 65 years and older from three geographical areas of England: results of the Cognitive Function and Ageing Study I and II. Lancet (London, England) 382(9902):1405–1412. [cited 2019 Mar 15]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23871492 CrossRefGoogle Scholar

Copyright information

© Fondazione Società Italiana di Neurologia 2019

Authors and Affiliations

  1. 1.Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations