Advertisement

Neurological Sciences

, Volume 40, Issue 4, pp 829–837 | Cite as

Methylphenidate modifies activity in the prefrontal and parietal cortex accelerating the time judgment

  • Tiago Lopes FariasEmail author
  • Victor MarinhoEmail author
  • Valécia Carvalho
  • Kaline Rocha
  • Paulo Ramiler Alves da Silva
  • Francisca Silva
  • Ariel Soares Teles
  • Daya Gupta
  • Pedro Ribeiro
  • Bruna Velasques
  • Mauricio Cagy
  • Victor Hugo Bastos
  • Fernando Silva-Junior
  • Silmar Teixeira
Original Article

Abstract

Methylphenidate produces its effects via actions on cortical areas involved with attention and working memory, which have a direct role in time estimation judgment tasks. In particular, the prefrontal and parietal cortex has been the target of several studies to understand the effect of methylphenidate on executive functions and time interval perception. However, it has not yet been studied whether acute administration of methylphenidate influences performance in time estimation task and the changes in alpha band absolute power in the prefrontal and parietal cortex. The current study investigates the influence of the acute use of methylphenidate in both performance and judgment in the time estimation interpretation through the alpha band absolute power activity in the prefrontal and parietal cortex. This is a double-blind, crossover study with a sample of 32 subjects under control (placebo) and experimental (methylphenidate) conditions with absolute alpha band power analysis during a time estimation task. We observed that methylphenidate does not influence task performance (p > 0.05), but it increases the time interval underestimation by over 7 s (p < 0.001) with a concomitant decrease in absolute alpha band power in the ventrolateral prefrontal cortex and dorsolateral prefrontal cortex and parietal cortex (p < 0.001). Acute use of methylphenidate increases the time interval underestimation, consistent with reduced accuracy of the internal clock mechanisms. Furthermore, acute use of methylphenidate influences the absolute alpha band power over the dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, and parietal cortex.

Keywords

Methylphenidate Prefrontal cortex Parietal cortex Time estimation Alpha band Electroencephalography 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The Ethics Committee of the Federal University of Piauí approved all procedures, and participants provided written, informed consent (no. 1607069/2016).

References

  1. 1.
    Batistela S, Bueno OFA, Vaz LJ, Galduróz JCF (2016) Methylphenidate as a cognitive enhancer in healthy young people. Dement Neuropsychol 10(2):134–142PubMedPubMedCentralGoogle Scholar
  2. 2.
    Newcorn JH, Nagy P, Childress AC, Frick G, Yan B, Pliszka S (2017) Randomized, double-blind, placebo-controlled acute comparator trials of Lisdexamfetamine and extended-release methylphenidate in adolescents with attention-deficit/hyperactivity disorder. CNS Drugs 31(11):999–1014PubMedPubMedCentralGoogle Scholar
  3. 3.
    Grünblatt E, Bartl J, Walitza S (2018) Methylphenidate enhances neuronal differentiation and reduces proliferation concomitant to activation of Wnt signal transduction pathways. Transl Psychiatry 8(1):51PubMedPubMedCentralGoogle Scholar
  4. 4.
    Righi S, Galli L, Paganini M, Bertini E, Viggiano MP, Piacentini S (2016) Time perception impairment in early-to-moderate stages of Huntington's disease is related to memory deficits. Neurol Sci 37(1):97–104PubMedGoogle Scholar
  5. 5.
    Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW (2000) Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci 20(6):RC65PubMedGoogle Scholar
  6. 6.
    Linssen AM, Vuurman EF, Sambeth A, Riedel WJ (2012) Methylphenidate produces selective enhancement of declarative memory consolidation in healthy volunteers. Psychopharmacology 221(4):611–619PubMedGoogle Scholar
  7. 7.
    Busardò FP, Kyriakou C, Cipolloni L, Zaami S, Frati P (2016) From clinical application to cognitive enhancement: the example of methylphenidate. Curr Neuropharmacol 14(1):17–27PubMedPubMedCentralGoogle Scholar
  8. 8.
    Storebø OJ, Pedersen N, Ramstad E, Kielsholm ML, Nielsen SS, Krogh HB, Moreira-Maia CR, Magnusson FL, Holmskov M, Gerner T, Skoog M, Rosendal S, Groth C, Gillies D, Buch Rasmussen K, Gauci D, Zwi M, Kirubakaran R, Håkonsen SJ, Aagaard L, Simonsen E, Gluud C. Methylphenidate for attention deficit hyperactivity disorder (ADHD) in children and adolescents – assessment of adverse events in non-randomised studies. Cochrane Database of Syst Rev 2018, Issue 5. Art. No.: CD012069Google Scholar
  9. 9.
    Jenson D, Yang K, Acevedo-Rodriguez A, Levine A, Broussard JI, Tang J, Dani JA (2015) Dopamine and norepinephrine receptors participate in methylphenidate enhancement of in vivo hippocampal synaptic plasticity. Neuropharmacology 90:23–32PubMedGoogle Scholar
  10. 10.
    Janssen TW, Bink M, Geladé K, van Mourik R, Maras A, Oosterlaan J (2016) A randomized controlled trial investigating the effects of neurofeedback, methylphenidate, and physical activity on event-related potentials in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol 26(4):344–353Google Scholar
  11. 11.
    Sauseng P, Klimesch W, Schabus M, Doppelmayr M (2005) Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int J Psychophysiol 57(2):97–103PubMedGoogle Scholar
  12. 12.
    Tomasi D, Volkow ND, Wang GJ, Wang R, Telang F, Caparelli EC, Wong C, Jayne M, Fowler JS (2011) Methylphenidate enhances brain activation and deactivation responses to visual attention and working memory tasks in healthy controls. NeuroImage 54(4):3101–3110PubMedGoogle Scholar
  13. 13.
    Murty VP, Sambataro F, Radulescu E, Altamura M, Iudicello J, Zoltick B, Weinberger DR, Goldberg TE, Mattay VS (2011) Selective updating of working memory content modulates meso-cortico-striatal activity. NeuroImage 57(3):1264–1272PubMedPubMedCentralGoogle Scholar
  14. 14.
    Coull JT, Cheng RK, Meck WH (2011) Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology 36(1):3–25Google Scholar
  15. 15.
    Fontes R, Ribeiro J, Gupta DS, Machado D, Lopes-Júnior F, Magalhães F, Bastos VH, Rocha K, Marinho V, Lima G, Velasques B, Ribeiro P, Orsini M, Pessoa B, Leite MA, Teixeira S (2016) Time perception mechanisms at central nervous system. Neurol Int 8(1):5939PubMedPubMedCentralGoogle Scholar
  16. 16.
    Meck WH (1984) Attentional bias between modalities: effect on the internal clock, memory, and decision stages used in animal time discrimination. Ann N Y Acad Sci 423:528–541PubMedGoogle Scholar
  17. 17.
    Matell MS, Meck WH (2000) Neuropsychological mechanisms of interval timing behavior. BioEssays 22(1):94–103PubMedGoogle Scholar
  18. 18.
    Wilson AG, Matell MS, Crystal JD (2015) The influence of multiple temporal memories in the peak-interval procedure. Learn Behav 43(2):153–162PubMedPubMedCentralGoogle Scholar
  19. 19.
    Pfeuty M, Ragot R, Pouthas V (2003) When time is up: CNV time course differentiates the roles of the hemispheres in the discrimination of short tone durations. Exp Brain Res 151(3):372–379PubMedGoogle Scholar
  20. 20.
    Lewis PA, Miall RC (2006) A right hemispheric prefrontal system for cognitive time measurement. Behav Process 71(2–3):226–234Google Scholar
  21. 21.
    Üstün S, Kale EH, Çiçek M (2017) Neural networks for time perception and working memory. Front Hum Neurosci 11:83PubMedPubMedCentralGoogle Scholar
  22. 22.
    Marcos E, Genovesio A (2017) Interference between space and time estimations: from behavior to neurons. Front Neurosci 11:631PubMedPubMedCentralGoogle Scholar
  23. 23.
    Lee HY, Yang EL (2018) Exploring the effects of working memory on time perception in attention deficit hyperactivity disorder. Psychol Rep 1:33294118755674Google Scholar
  24. 24.
    Broadway JM, Engle RW (2011) Lapsed attention to elapsed time? Individual differences in working memory capacity and temporal reproduction. Acta Psychol 137(1):115–126Google Scholar
  25. 25.
    Volkow ND, Wang GJ, Tomasi D, Telang F, Fowler JS, Pradhan K, Jayne M, Logan J, Goldstein RZ, Alia-Klein N, Wong C (2010) Methylphenidate attenuates limbic brain inhibition after cocaine-cues exposure in cocaine abusers. PLoS One 5(7):e11509PubMedPubMedCentralGoogle Scholar
  26. 26.
    Coghill DR, Seth S, Pedroso S, Usala T, Currie J, Gagliano A (2014) Effects of methylphenidate on cognitive functions in children and adolescents with attention-deficit/hyperactivity disorder: evidence from a systematic review and a meta-analysis. Biol Psychiatry 76(8):603–615PubMedGoogle Scholar
  27. 27.
    García-Avilés Á, Albert-Gascó H, Arnal-Vicente I, Elhajj E, Sanjuan-Arias J, Sanchez-Perez AM, Olucha-Bordonau F (2015) Acute oral administration of low doses of methylphenidate targets calretinin neurons in the rat septal area. Front Neuroanat 9:33PubMedPubMedCentralGoogle Scholar
  28. 28.
    Kovshoff H, Banaschewski T, Buitelaar JK, Carucci S, Coghill D, Danckaerts M, Dittmann RW, Falissard B, Grimshaw DG, Hollis C, Inglis S, Konrad K, Liddle E, McCarthy S, Nagy P, Thompson M, Wong IC, Zuddas A, Sonuga-Barke EJ (2016) Reports of perceived adverse events of stimulant medication on cognition, motivation, and mood: qualitative investigation and the generation of items for the medication and cognition rating scale. J Child Adolesc Psychopharmacol 26(6):537–547PubMedPubMedCentralGoogle Scholar
  29. 29.
    Baldwin RL, Chelonis JJ, Flake RA, Edwards MC, Feild CR, Meaux JB, Paule MG (2004) Effect of methylphenidate on time perception in children with attention-deficit/hyperactivity disorder. Exp Clin Psychopharmacol 12(1):57–64PubMedGoogle Scholar
  30. 30.
    Teki S, Grube M, Kumar S, Griffiths TD (2011) Distinct neural substrates of duration-based and beat-based auditory timing. J Neurosci 31(10):3805–3812PubMedPubMedCentralGoogle Scholar
  31. 31.
    Marinho V, Oliveira T, Rocha K, Ribeiro J, Magalhães F, Bento T, Pinto GR, Velasques B, Ribeiro P, Di Giorgio L, Orsini M, Gupta DS, Bittencourt J, Bastos VH, Teixeira S (2018) The dopaminergic system dynamic in the time perception: a review of the evidence. Int J Neurosci 128(3):262–282Google Scholar
  32. 32.
    Zilles D, Meyer J, Schneider-Axmann T, Ekawardhani S, Gruber E, Falkai P, Gruber O (2012) Genetic polymorphisms of 5-HTT and DAT but not COMT differentially affect verbal and visuospatial working memory functioning. Eur Arch Psychiatry Clin Neurosci 262(8):667–676PubMedPubMedCentralGoogle Scholar
  33. 33.
    Cirulli ET, Kasperaviciūte D, Attix DK, Need AC, Ge D, Gibson G, Goldstein DB (2010) Common genetic variation and performance on standardized cognitive tests. Eur J Hum Genet 18(7):815–820PubMedPubMedCentralGoogle Scholar
  34. 34.
    Davidson RJ (2004) What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research. Biol Psychol 67:219–233PubMedGoogle Scholar
  35. 35.
    Tomer R, Goldstein RZ, Wang GJ, Wong C, Volkow ND (2008) Incentive motivation is associated with striatal dopamine asymmetry. Biol Psychol 77(1):98–101PubMedGoogle Scholar
  36. 36.
    Dockree PM, Barnes JJ, Matthews N, Dean AJ, Abe R, Nandam LS, Kelly SP, Bellgrove MA, O'Connell RG (2017) The effects of methylphenidate on the neural signatures of sustained attention. Biol Psychiatry 82(9):687–694PubMedGoogle Scholar
  37. 37.
    Paes F, Machado S, Arias-Carrión O, Domingues CA, Teixeira S, Velasques B, Cunha M, Minc D, Basile LF, Budde H, Cagy M, Piedade R, Kerick S, Menéndez-González M, Skaper SD, Norwood BA, Ribeiro P, Nardi AE (2011) Effects of methylphenidate on performance of a practical pistol shooting task: a quantitative electroencephalography (qEEG) study. Int Arch Med 4(1):6PubMedPubMedCentralGoogle Scholar
  38. 38.
    Loo SK, Bilder RM, Cho AL, Sturm A, Cowen J, Walshaw P, Levitt J, Del'Homme M, Piacentini J, McGough JJ, McCracken JT (2016) Effects of d-Methylphenidate, Guanfacine, and Their Combination on Electroencephalogram Resting State Spectral Power in Attention-Deficit/Hyperactivity Disorder. J Am Acad Child Adolesc Psychiatry 55(8):674–682.e1PubMedPubMedCentralGoogle Scholar
  39. 39.
    Rosenberg MD, Zhang S, Hsu WT, Scheinost D, Finn ES, Shen X, Constable RT, Li CS, Chun MM (2016) Methylphenidate modulates functional network connectivity to enhance attention. J Neurosci 36(37):9547–9557PubMedPubMedCentralGoogle Scholar
  40. 40.
    Chu R, Shumsky J, Waterhouse BD (2016) Differentiation of rodent behavioral phenotypes and methylphenidate action in sustained and flexible attention tasks. Brain Res 1641(Pt B):306–319PubMedGoogle Scholar
  41. 41.
    Manktelow AE, Menon DK, Sahakian BJ, Stamatakis EA (2017) Working memory after traumatic brain injury: the neural basis of improved performance with methylphenidate. Front Behav Neurosci 11:58PubMedPubMedCentralGoogle Scholar
  42. 42.
    Wu ZM, Bralten J, An L, Cao QJ, Cao XH, Sun L, Liu L, Yang L, Mennes M, Zang YF, Franke B, Hoogman M, Wang YF (2017) Verbal working memory-related functional connectivity alterations in boys with attention-deficit/hyperactivity disorder and the effects of methylphenidate. J Psychopharmacol 31(8):1061–1069PubMedGoogle Scholar
  43. 43.
    Rubia K, Halari R, Christakou A, Taylor E (2009) Impulsiveness as a timing disturbance: neurocognitive abnormalities in attention-deficit hyperactivity disorder during temporal processes and normalization with methylphenidate. Philos Trans R Soc Lond Ser B Biol Sci 364(1525):1919–1931Google Scholar
  44. 44.
    Nandam LS, Hester R, Wagner J, Cummins TD, Garner K, Dean AJ, Kim BN, Nathan PJ, Mattingley JB, Bellgrove MA (2011) Methylphenidate but not atomoxetine or citalopram modulates inhibitory control and response time variability. Biol Psychiatry 69(9):902–904PubMedGoogle Scholar
  45. 45.
    Marx I, Weirich S, Berger C, Herpertz SC, Cohrs S, Wandschneider R, Höppner J, Häßler F (2017) Living in the fast lane: evidence for a global perceptual timing deficit in childhood ADHD caused by distinct but partially overlapping task-dependent cognitive mechanisms. Front Hum Neurosci 11:122PubMedPubMedCentralGoogle Scholar
  46. 46.
    Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113Google Scholar
  47. 47.
    Nikolaus S, Wirrwar A, Antke C, Arkian S, Schramm N, Müller HW, Larisch R (2005) Quantitation of dopamine transporter blockade by methylphenidate: first in vivo investigation using [123I]FP-CIT and a dedicated small animal SPECT. Eur J Nucl Med Mol Imaging 32(3):308–313PubMedGoogle Scholar
  48. 48.
    Nikolaus S, Antke C, Beu M, Kley K, Larisch R, Wirrwar A, Müller HW (2007) In-vivo quantification of dose-dependent dopamine transporter blockade in the rat striatum with small animal SPECT. Nucl Med Commun 28(3):207–213PubMedGoogle Scholar
  49. 49.
    Ribeiro JA, Marinho FVC, Rocha K, Magalhães F, Baptista AF, Velasques B, Ribeiro P, Cagy M, Bastos VH, Gupta D, Teixeira S (2018) Low-frequency rTMS in the superior parietal cortex affects the working memory in horizontal axis during the spatial task performance. Neurol Sci 39(3):527–532PubMedGoogle Scholar
  50. 50.
    Marinho FVC, Pinto GR, Oliveira T, Gomes A, Lima V, Ferreira-Fernandes H, Rocha K, Magalhães F, Velasques B, Ribeiro P, Cagy M, Gupta D, Bastos VH, Teixeira S (2018) The SLC6A3 3'-UTR VNTR and intron 8 VNTR polymorphisms association in the time estimation. Brain Struct Funct.  https://doi.org/10.1007/s00429-018-1773-3
  51. 51.
    Leon MI, Shadlen MN (2003) Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38(2):317–327PubMedGoogle Scholar
  52. 52.
    Cohen J (1988) Statistical power analysis for the behavioral sciences. New York, Routledge AcademicGoogle Scholar
  53. 53.
    Fayers PM, Machin D (1995) Sample size: how many patients are necessary? Br J Cancer 72(1):1–9PubMedPubMedCentralGoogle Scholar
  54. 54.
    Carlini A, French R (2014) Visual tracking combined with hand-tracking improves time perception of moving stimuli. Sci Rep 4:5363PubMedPubMedCentralGoogle Scholar
  55. 55.
    Jozefowiez J, Polack CW, Machado A, Miller RR (2014) Trial frequency effects in human temporal bisection: implications for theories of timing. Behav Process 101:81–88Google Scholar
  56. 56.
    Lui MA, Penney TB, Schirmer A (2011) Emotion effects on timing: attention versus pacemaker accounts. PLoS One 6(7):e21829PubMedPubMedCentralGoogle Scholar
  57. 57.
    Chen Z, Treisman A (2009) Implicit perception and level of processing in object-substitution masking. Psychol Sci 20(5):560–567PubMedGoogle Scholar
  58. 58.
    Agay N, Yechiam E, Carmel Z, Levkovitz Y (2010) Non-specific effects of methylphenidate (Ritalin) on cognitive ability and decision-making of ADHD and healthy adults. Psychopharmacology 210(4):511–519PubMedPubMedCentralGoogle Scholar
  59. 59.
    Allman MJ, Meck WH (2012) Pathophysiological distortions in time perception and timed performance. Brain 135(Pt 3):656–677PubMedGoogle Scholar
  60. 60.
    Howlett JR, Huang H, Hysek CM, Paulus MP (2017) The effect of single-dose methylphenidate on the rate of error-driven learning in healthy males: a randomized controlled trial. Psychopharmacology 234(22):3353–3360PubMedPubMedCentralGoogle Scholar
  61. 61.
    Rammsayer T, Lustnauer S (1989) Sex differences in time perception. Percept Mot Skills 68(1):195–198PubMedGoogle Scholar
  62. 62.
    Dolu N, Golgeli A, Suer C, Ascioglu M, Ozesmi C, Sahin O (2004) Sex-related differences in time estimation and the role of expectancy. Int J Neurosci 114(7):805–815PubMedGoogle Scholar
  63. 63.
    Zhang M, Zhang L, Yu Y, Liu T, Luo W (2017) Women overestimate temporal duration: evidence from Chinese emotional words. Front Psychol 8:4PubMedPubMedCentralGoogle Scholar
  64. 64.
    Deng Y, Chang L, Yang M, Huo M, Zhou R (2016) Gender differences in emotional response: inconsistency between experience and expressivity. PLoS One 11(6):e0158666PubMedPubMedCentralGoogle Scholar
  65. 65.
    Van Volkinburg H, Balsam P (2014) Effects of emotional valence and arousal on time perception. Timing Time Percept 2(3):360–378PubMedPubMedCentralGoogle Scholar
  66. 66.
    Ballotta D, Lui F, Porro CA, Nichelli PF, Benuzzi F (2018) Modulation of neural circuits underlying temporal production by facial expressions of pain. PLoS One 13(2):e0193100PubMedPubMedCentralGoogle Scholar
  67. 67.
    Zakay D, Block RA (2004) Prospective and retrospective duration judgments: an executive-control perspective. Acta Neurobiol Exp (Wars) 64(3):319–328Google Scholar
  68. 68.
    Tamm M, Uusberg A, Allik J, Kreegipuu K (2014) Emotional modulation of attention affects time perception: evidence from event-related potentials. Acta Psychol 149:148–156Google Scholar
  69. 69.
    Arnsten AF, Dudley AG (2005) Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: relevance to therapeutic effects in attention deficit hyperactivity disorder. Behav Brain Funct 1(1):2PubMedPubMedCentralGoogle Scholar
  70. 70.
    Rammsayer TH (1999) Neuropharmacological evidence for different timing mechanisms in humans. Q J Exp Psychol B 52(3):273–286PubMedGoogle Scholar
  71. 71.
    Pouthas V, Perbal S (2004) Time perception depends on accurate clock mechanisms as well as unimpaired attention and memory processes. Acta Neurobiol Exp (Wars) 64(3):367–385Google Scholar
  72. 72.
    Minkwitz J, Trenner MU, Sander C, Olbrich S, Sheldrick AJ, Hegerl U, Himmerich H (2012) Time perception at diferente EEG-vigilance levels. Behav Brain Funct 8:50PubMedPubMedCentralGoogle Scholar
  73. 73.
    Klimesch W (2012) α-Band oscillations, attention, and controlled access to stored information. Trends Cogn Sci 16(12):606–617PubMedPubMedCentralGoogle Scholar
  74. 74.
    Coull JT, Vidal F, Nazarian B, Macar F (2004) Functional anatomy of the attentional modulation of time estimation. Science 5:1506–1508Google Scholar
  75. 75.
    Harmon-Jones E, Gable PA, Peterson CK (2010) The role of asymmetric frontal cortical activity in emotion-related phenomena: a review and update. Biol Psychol 84:451–462PubMedGoogle Scholar
  76. 76.
    Babiloni C, Miniussi C, Babiloni F, Carducci F, Cincotti F, Del Percio C, Rossini PM (2004) Sub-second “temporal attention” modulates alpha rhythms. A high-resolution EEG study. Cogn Brain Res 19(3):259–268Google Scholar
  77. 77.
    Wittmann M, van Wassenhove V (2009) The experience of time: neural mechanisms and the interplay of emotion, cognition and embodiment. Philos Trans R Soc Lond Ser B Biol Sci 364(1525):1809–1813Google Scholar
  78. 78.
    Levy BJ, Wagner AD (2011) Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Ann N Y Acad Sci 1224(1):40–62PubMedPubMedCentralGoogle Scholar
  79. 79.
    Volkow ND, Wang GJ, Fowler JS, Logan J, Franceschi D, Maynard L, Ding YS, Gatley SJ, Gifford A, Zhu W, Swanson JM (2002) Relationship between blockade of dopamine transporters by oral methylphenidate and the increases in extracellular dopamine: therapeutic implications. Synapse 43(3):181–187PubMedGoogle Scholar

Copyright information

© Fondazione Società Italiana di Neurologia 2019

Authors and Affiliations

  • Tiago Lopes Farias
    • 1
    Email author
  • Victor Marinho
    • 1
    • 2
    Email author
  • Valécia Carvalho
    • 1
    • 2
  • Kaline Rocha
    • 1
    • 2
  • Paulo Ramiler Alves da Silva
    • 1
    • 3
  • Francisca Silva
    • 1
  • Ariel Soares Teles
    • 1
  • Daya Gupta
    • 4
  • Pedro Ribeiro
    • 5
  • Bruna Velasques
    • 5
  • Mauricio Cagy
    • 5
  • Victor Hugo Bastos
    • 6
  • Fernando Silva-Junior
    • 1
  • Silmar Teixeira
    • 1
    • 2
    • 3
  1. 1.Neuro-innovation Technology and Brain Mapping LaboratoryFederal University of PiauíParnaíbaBrazil
  2. 2.The Northeast Biotechnology NetworkFederal University of PiauíTeresinaBrazil
  3. 3.Masters Programs in BiotechnologyFederal University of PiauíParnaíbaBrazil
  4. 4.Department of BiologyCamden County CollegeBlackwoodUSA
  5. 5.Brain Mapping and Sensory Motor Integration LaboratoryInstitute of Psychiatry of Federal University of Rio de JaneiroRio de JaneiroBrazil
  6. 6.Brain Mapping and Functionality LaboratoryFederal University of PiauíParnaíbaBrazil

Personalised recommendations