Neurological Sciences

, Volume 40, Issue 1, pp 41–49 | Cite as

Subjective cognitive decline: preclinical manifestation of Alzheimer’s disease

  • Yan Lin
  • Pei-Yan Shan
  • Wen-Jing Jiang
  • Can ShengEmail author
  • Lin MaEmail author
Review Article


Subjective cognitive decline (SCD), characterized by a very early and subtle cognitive decline prior to the appearance of objective cognitive impairment, is considered to be the preclinical manifestation of Alzheimer’s disease (AD). Given the lack of significant abnormalities in standardized neuropsychological assessments for individuals with SCD, biochemical and neuroimaging biomarkers may be important indicators of the preclinical stage of AD. The application of various biomarkers derived from the cerebrospinal fluid and neuroimaging thus has the potential to make AD-related pathology detectable in vivo. In this review, we discuss the conceptual evolution of SCD as an entity and further elucidate characteristic cerebrospinal fluid and neuroimaging biomarkers of SCD.


Subjective cognitive decline Alzheimer’s disease Preclinical Biomarkers Neuroimaging 


Funding information

This work was supported by grants from the National Science Foundation for Young Scientists of China (No. 81100972) and Science and Technology Planning Project of Shandong Province (No. 2012GSF12120).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Jessen F, Amariglio R, van Boxtel M, Breteler M, Ceccaldi M, Chételat G, Dubois B, Dufouil C, Ellis K, van der Flier W, Glodzik L, van Harten A, de Leon M, McHugh P, Mielke M, Molinuevo J, Mosconi L, Osorio R, Perrotin A, Petersen R, Rabin L, Rami L, Reisberg B, Rentz D, Sachdev P, de la Sayette V, Saykin A, Scheltens P, Shulman M, Slavin M, Sperling R, Stewart R, Uspenskaya O, Vellas B, Visser P, Wagner M (2014) A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement 10(6):844–852PubMedPubMedCentralGoogle Scholar
  2. 2.
    Reisberg B, Ferris S, de Leon M, Crook T (1982) The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatry 139(9):1136–1139PubMedGoogle Scholar
  3. 3.
    Lauriola M, Esposito R, Delli Pizzi S, de Zambotti M, Londrillo F, Kramer J, Rabinovici G, Tartaro A (2017) Sleep changes without medial temporal lobe or brain cortical changes in community-dwelling individuals with subjective cognitive decline. Alzheimers Dement 13(7):783–791PubMedGoogle Scholar
  4. 4.
    Cheng Y, Chen T, Chiu M (2017) From mild cognitive impairment to subjective cognitive decline: conceptual and methodological evolution. Neuropsychiatr Dis Treat 13:491–498PubMedPubMedCentralGoogle Scholar
  5. 5.
    Gallassi R, Oppi F, Poda R, Scortichini S, Stanzani Maserati M, Marano G, Sambati L (2010) Are subjective cognitive complaints a risk factor for dementia? Neurol Sci 31(3):327–336PubMedGoogle Scholar
  6. 6.
    Donovan N, Amariglio R, Zoller A, Rudel R, Gomez-Isla T, Blacker D, Hyman B, Locascio J, Johnson K, Sperling R, Marshall G, Rentz D (2014) Subjective cognitive concerns and neuropsychiatric predictors of progression to the early clinical stages of Alzheimer disease. Am J Geriatr Psychiatry 22(12):1642–1651PubMedPubMedCentralGoogle Scholar
  7. 7.
    Reisberg B, Shulman M, Torossian C, Leng L, Zhu W (2010) Outcome over seven years of healthy adults with and without subjective cognitive impairment. Alzheimers Dement 6(1):11–24PubMedGoogle Scholar
  8. 8.
    Abner E, Kryscio R, Caban-Holt A, Schmitt F (2015) Baseline subjective memory complaints associate with increased risk of incident dementia: the PREADVISE trial. J Prev Alzheimers Dis 2(1):11–16PubMedPubMedCentralGoogle Scholar
  9. 9.
    Koppara A, Wagner M, Lange C, Ernst A, Wiese B, König H, Brettschneider C, Riedel-Heller S, Luppa M, Weyerer S, Werle J, Bickel H, Mösch E, Pentzek M, Fuchs A, Wolfsgruber S, Beauducel A, Scherer M, Maier W, Jessen F (2015) Cognitive performance before and after the onset of subjective cognitive decline in old age. Alzheimers Dement 1(2):194–205Google Scholar
  10. 10.
    Sun Y, Yang F, Lin C, Han Y (2015) Biochemical and neuroimaging studies in subjective cognitive decline: progress and perspectives. CNS Neurosci Ther 21(10):768–775PubMedGoogle Scholar
  11. 11.
    Giuli C, Fabbietti P, Paoloni C, Pensieri M, Lattanzio F, Postacchini D (2016) Subjective memory complaints in Italian elderly with mild cognitive impairment: implication of psychological status. Neurol Sci 37(7):1153–1157PubMedPubMedCentralGoogle Scholar
  12. 12.
    Mendonca MD, Alves L, Bugalho P (2016) From subjective cognitive complaints to dementia: who is at risk?: a systematic review. Am J Alzheimers Dis Other Demen 31(2):105–114. PubMedGoogle Scholar
  13. 13.
    Jack C, Albert M, Knopman D, McKhann G, Sperling R, Carrillo M, Thies B, Phelps C (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):257–262PubMedPubMedCentralGoogle Scholar
  14. 14.
    Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):270–279. PubMedPubMedCentralGoogle Scholar
  15. 15.
    Eckerström M, Göthlin M, Rolstad S, Hessen E, Eckerström C, Nordlund A, Johansson B, Svensson J, Jonsson M, Sacuiu S, Wallin A (2017) Longitudinal evaluation of criteria for subjective cognitive decline and preclinical Alzheimer’s disease in a memory clinic sample. Alzheimers Dement 8:96–107Google Scholar
  16. 16.
    Tandetnik C, Hergueta T, Bonnet P, Dubois B, Bungener C (2017) Influence of early maladaptive schemas, depression, and anxiety on the intensity of self-reported cognitive complaint in older adults with subjective cognitive decline. Int Psychogeriatr 29(10):1657–1667PubMedGoogle Scholar
  17. 17.
    Zlatar ZZ, Muniz MC, Espinoza SG, Gratianne R, Gollan TH, Galasko D, Salmon DP (2018) Subjective cognitive decline, objective cognition, and depression in older Hispanics screened for memory impairment. J Alzheimers Dis 63(3):949–956. PubMedPubMedCentralGoogle Scholar
  18. 18.
    Gifford KA, Liu D, Romano R 3rd, Jones RN, Jefferson AL (2015) Development of a subjective cognitive decline questionnaire using item response theory: a pilot study. Alzheimers Dement 1(4):429–439. Google Scholar
  19. 19.
    Vogel A, Salem L, Andersen B, Waldemar G (2016) Differences in quantitative methods for measuring subjective cognitive decline—results from a prospective memory clinic study. Int Psychogeriatr 28(9):1513–1520PubMedGoogle Scholar
  20. 20.
    Hurt C, Burns A, Brown R, Barrowclough C (2010) Perceptions of subjective memory complaint in older adults: the Illness Perception Questionnaire-Memory (IPQ-M). Int Psychogeriatr 22(5):750–760PubMedGoogle Scholar
  21. 21.
    Reid M, Parkinson L, Gibson R, Schofield P, D'Este C, Attia J, Tavener M, Byles J (2012) Memory complaint questionnaire performed poorly as screening tool: validation against psychometric tests and affective measures. J Clin Epidemiol 65(2):199–205PubMedGoogle Scholar
  22. 22.
    Hao L, Wang X, Zhang L, Xing Y, Guo Q, Hu X, Mu B, Chen Y, Chen G, Cao J, Zhi X, Liu J, Li X, Yang L, Li J, Du W, Sun Y, Wang T, Liu Z, Liu Z, Zhao X, Li H, Yu Y, Wang X, Jia J, Han Y (2017) Prevalence, risk factors, and complaints screening tool exploration of subjective cognitive decline in a large cohort of the Chinese population. J Alzheimers Dis 60(2):371–388PubMedGoogle Scholar
  23. 23.
    Farias S, Mungas D, Reed B, Cahn-Weiner D, Jagust W, Baynes K, Decarli C (2008) The measurement of everyday cognition (ECog): scale development and psychometric properties. Neuropsychology 22(4):531–544PubMedPubMedCentralGoogle Scholar
  24. 24.
    van Harten A, Mielke M, Swenson-Dravis D, Hagen C, Edwards K, Roberts R, Geda Y, Knopman D, Petersen R (2018) Subjective cognitive decline and risk of MCI: the Mayo Clinic Study of Aging. Neurology 91(4):e300–e312PubMedGoogle Scholar
  25. 25.
    Sanabria A, Alegret M, Rodriguez-Gomez O, Valero S, Sotolongo-Grau O, Monté-Rubio G, Abdelnour C, Espinosa A, Ortega G, Perez-Cordon A, Gailhajanet A, Hernandez I, Rosende-Roca M, Vargas L, Mauleon A, Sanchez D, Martin E, Rentz D, Lomeña F, Ruiz A, Tarraga L, Boada M (2018) The Spanish version of Face-Name Associative Memory Exam (S-FNAME) performance is related to amyloid burden in subjective cognitive decline. Sci Rep 8(1):3828PubMedPubMedCentralGoogle Scholar
  26. 26.
    Dubois B, Feldman H, Jacova C, Dekosky S, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O'brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser P, Scheltens P (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6(8):734–746PubMedGoogle Scholar
  27. 27.
    Prestia A, Caroli A, Wade S, van der Flier W, Ossenkoppele R, Van Berckel B, Barkhof F, Teunissen C, Wall A, Carter S, Schöll M, Choo I, Nordberg A, Scheltens P, Frisoni G (2015) Prediction of AD dementia by biomarkers following the NIA-AA and IWG diagnostic criteria in MCI patients from three European memory clinics. Alzheimers Dement 11(10):1191–1201PubMedGoogle Scholar
  28. 28.
    Mutlu J, Landeau B, Gaubert M, de La Sayette V, Desgranges B, Chételat G (2017) Distinct influence of specific versus global connectivity on the different Alzheimer’s disease biomarkers. Brain J Neurol 140(12):3317–3328Google Scholar
  29. 29.
    Manning E, Macdonald K, Leung K, Young J, Pepple T, Lehmann M, Zuluaga M, Cardoso M, Schott J, Ourselin S, Crutch S, Fox N, Barnes J (2015) Differential hippocampal shapes in posterior cortical atrophy patients: a comparison with control and typical AD subjects. Hum Brain Mapp 36(12):5123–5136PubMedPubMedCentralGoogle Scholar
  30. 30.
    Visser P, Verhey F, Knol D, Scheltens P, Wahlund L, Freund-Levi Y, Tsolaki M, Minthon L, Wallin A, Hampel H, Bürger K, Pirttila T, Soininen H, Rikkert M, Verbeek M, Spiru L, Blennow K (2009) Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study. Lancet Neurol 8(7):619–627PubMedGoogle Scholar
  31. 31.
    Scheef L, Spottke A, Daerr M, Joe A, Striepens N, Kölsch H, Popp J, Daamen M, Gorris D, Heneka M, Boecker H, Biersack H, Maier W, Schild H, Wagner M, Jessen F (2012) Glucose metabolism, gray matter structure, and memory decline in subjective memory impairment. Neurology 79(13):1332–1339PubMedGoogle Scholar
  32. 32.
    Antonell A, Fortea J, Rami L, Bosch B, Balasa M, Sánchez-Valle R, Iranzo A, Molinuevo J, Lladó A (2011) Different profiles of Alzheimer’s disease cerebrospinal fluid biomarkers in controls and subjects with subjective memory complaints. J Neural Transm 118(2):259–262PubMedGoogle Scholar
  33. 33.
    Rami L, Fortea J, Bosch B, Solé-Padullés C, Lladó A, Iranzo A, Sánchez-Valle R, Molinuevo J (2011) Cerebrospinal fluid biomarkers and memory present distinct associations along the continuum from healthy subjects to AD patients. J Alzheimers Dis 23(2):319–326PubMedGoogle Scholar
  34. 34.
    Hooshmand B, Lökk J, Solomon A, Mangialasche F, Miralbell J, Spulber G, Annerbo S, Andreasen N, Winblad B, Cedazo-Minguez A, Wahlund L, Kivipelto M (2014) Vitamin D in relation to cognitive impairment, cerebrospinal fluid biomarkers, and brain volumes. J Gerontol A Biol Sci Med Sci 69(9):1132–1138PubMedGoogle Scholar
  35. 35.
    Wolfsgruber S, Jessen F, Koppara A, Kleineidam L, Schmidtke K, Frölich L, Kurz A, Schulz S, Hampel H, Heuser I, Peters O, Reischies F, Jahn H, Luckhaus C, Hüll M, Gertz H, Schröder J, Pantel J, Rienhoff O, Rüther E, Henn F, Wiltfang J, Maier W, Kornhuber J, Wagner M (2015) Subjective cognitive decline is related to CSF biomarkers of AD in patients with MCI. Neurology 84(12):1261–1268PubMedGoogle Scholar
  36. 36.
    Rolstad S, Berg AI, Bjerke M, Blennow K, Johansson B, Zetterberg H, Wallin A (2011) Amyloid-beta(4)(2) is associated with cognitive impairment in healthy elderly and subjective cognitive impairment. J Alzheimers Dis 26(1):135–142. PubMedGoogle Scholar
  37. 37.
    Schoonenboom N, Reesink F, Verwey N, Kester M, Teunissen C, van de Ven P, Pijnenburg Y, Blankenstein M, Rozemuller A, Scheltens P, van der Flier W (2012) Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort. Neurology 78(1):47–54PubMedGoogle Scholar
  38. 38.
    Fortea J, Sala-Llonch R, Bartrés-Faz D, Lladó A, Solé-Padullés C, Bosch B, Antonell A, Olives J, Sanchez-Valle R, Molinuevo J, Rami L (2011) Cognitively preserved subjects with transitional cerebrospinal fluid ß-amyloid 1−42 values have thicker cortex in Alzheimer’s disease vulnerable areas. Biol Psychiatry 70(2):183–190PubMedGoogle Scholar
  39. 39.
    Mandecka M, Budziszewska M, Barczak A, Peplonska B, Chodakowska-Zebrowska M, Filipek-Gliszczynska A, Nesteruk M, Styczynska M, Barcikowska M, Gabryelewicz T (2016) Association between cerebrospinal fluid biomarkers for Alzheimer’s disease, APOE genotypes and auditory verbal learning task in subjective cognitive decline, mild cognitive impairment, and Alzheimer’s disease. J Alzheimers Dis 54(1):157–168. PubMedGoogle Scholar
  40. 40.
    Ali J, Smart C, Gawryluk J (2018) Subjective cognitive decline and APOE ɛ4: a systematic review. J Alzheimers Dis 65(1):303–320PubMedGoogle Scholar
  41. 41.
    Risacher SL, Kim S, Nho K, Foroud T, Shen L, Petersen RC, Jack CR Jr, Beckett LA, Aisen PS, Koeppe RA, Jagust WJ, Shaw LM, Trojanowski JQ, Weiner MW, Saykin AJ, Alzheimer's Disease Neuroimaging I (2015) APOE effect on Alzheimer’s disease biomarkers in older adults with significant memory concern. Alzheimers Dement 11(12):1417–1429. PubMedPubMedCentralGoogle Scholar
  42. 42.
    Villemagne V, Rowe C (2013) Long night’s journey into the day: amyloid-β imaging in Alzheimer’s disease. J Alzheimers Dis 33(Suppl 1):S349–S359PubMedGoogle Scholar
  43. 43.
    Rowe C, Ellis K, Rimajova M, Bourgeat P, Pike K, Jones G, Fripp J, Tochon-Danguy H, Morandeau L, O'Keefe G, Price R, Raniga P, Robins P, Acosta O, Lenzo N, Szoeke C, Salvado O, Head R, Martins R, Masters C, Ames D, Villemagne V (2010) Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 31(8):1275–1283PubMedGoogle Scholar
  44. 44.
    Chételat G, Villemagne V, Pike K, Baron J, Bourgeat P, Jones G, Faux N, Ellis K, Salvado O, Szoeke C, Martins R, Ames D, Masters C, Rowe C (2010) Larger temporal volume in elderly with high versus low beta-amyloid deposition. Brain J Neurol 133(11):3349–3358Google Scholar
  45. 45.
    Zhang T, Liu S, Zhang Y, Guan Y, Wang X, Zhao L, Shi Z, Yue W, Zhang Y, Liu S, Ji Y (2017) Apolipoprotein E e4 allele is associated with subjective cognitive decline: a meta-analysis. Neuroepidemiology 49(3–4):165–173PubMedGoogle Scholar
  46. 46.
    Verdile G, Laws S, Henley D, Ames D, Bush A, Ellis K, Faux N, Gupta V, Li Q, Masters C, Pike K, Rowe C, Szoeke C, Taddei K, Villemagne V, Martins R (2014) Associations between gonadotropins, testosterone and β amyloid in men at risk of Alzheimer’s disease. Mol Psychiatry 19(1):69–75PubMedGoogle Scholar
  47. 47.
    Meiberth D, Scheef L, Wolfsgruber S, Boecker H, Block W, Träber F, Erk S, Heneka M, Jacobi H, Spottke A, Walter H, Wagner M, Hu X, Jessen F (2015) Cortical thinning in individuals with subjective memory impairment. J Alzheimers Dis 45(1):139–146PubMedGoogle Scholar
  48. 48.
    Doré V, Villemagne V, Bourgeat P, Fripp J, Acosta O, Chetélat G, Zhou L, Martins R, Ellis K, Masters C, Ames D, Salvado O, Rowe C (2013) Cross-sectional and longitudinal analysis of the relationship between Aβ deposition, cortical thickness, and memory in cognitively unimpaired individuals and in Alzheimer disease. JAMA Neurology 70(7):903–911PubMedGoogle Scholar
  49. 49.
    Perrotin A, de Flores R, Lamberton F, Poisnel G, La Joie R, de la Sayette V, Mezenge F, Tomadesso C, Landeau B, Desgranges B, Chetelat G (2015) Hippocampal subfield volumetry and 3D surface mapping in subjective cognitive decline. J Alzheimers Dis 48(Suppl 1):S141–S150. PubMedGoogle Scholar
  50. 50.
    Cherbuin N, Sargent-Cox K, Easteal S, Sachdev P, Anstey KJ (2015) Hippocampal atrophy is associated with subjective memory decline: the PATH Through Life Study. Am J Geriatr Psychiatry 23(5):446–455. PubMedGoogle Scholar
  51. 51.
    Selnes P, Aarsland D, Bjornerud A, Gjerstad L, Wallin A, Hessen E, Reinvang I, Grambaite R, Auning E, Kjaervik VK, Due-Tonnessen P, Stenset V, Fladby T (2013) Diffusion tensor imaging surpasses cerebrospinal fluid as predictor of cognitive decline and medial temporal lobe atrophy in subjective cognitive impairment and mild cognitive impairment. J Alzheimers Dis 33(3):723–736. PubMedGoogle Scholar
  52. 52.
    Shu N, Wang X, Bi Q, Zhao T, Han Y (2018) Disrupted topologic efficiency of white matter structural connectome in individuals with subjective cognitive decline. Radiology 286(1):229–238. PubMedGoogle Scholar
  53. 53.
    Lamar M, Dannhauser TM, Walker Z, Rodda JE, Cutinha DJ, Shergill SS (2011) Memory complaints with and without memory impairment: the impact of leukoaraiosis on cognition. J Int Neuropsychol Soc 17(6):1104–1112. PubMedGoogle Scholar
  54. 54.
    Ryu SY, Lim EY, Na S, Shim YS, Cho JH, Yoon B, Hong YJ, Yang DW (2017) Hippocampal and entorhinal structures in subjective memory impairment: a combined MRI volumetric and DTI study. Int Psychogeriatr 29(5):785–792. PubMedGoogle Scholar
  55. 55.
    Habib M, Mak E, Gabel S, Su L, Williams G, Waldman A, Wells K, Ritchie K, Ritchie C, O'Brien J (2017) Functional neuroimaging findings in healthy middle-aged adults at risk of Alzheimer’s disease. Ageing Res Rev 36:88–104PubMedGoogle Scholar
  56. 56.
    Rodda J, Dannhauser T, Cutinha D, Shergill S, Walker Z (2009) Subjective cognitive impairment: increased prefrontal cortex activation compared to controls during an encoding task. Int J Geriatr Psychiatry 24(8):865–874PubMedGoogle Scholar
  57. 57.
    Rodda J, Dannhauser T, Cutinha DJ, Shergill SS, Walker Z (2011) Subjective cognitive impairment: functional MRI during a divided attention task. Eur Psychiatry 26(7):457–462. PubMedGoogle Scholar
  58. 58.
    Sun Y, Dai Z, Li Y, Sheng C, Li H, Wang X, Chen X, He Y, Han Y (2016) Subjective cognitive decline: mapping functional and structural brain changes—a combined resting-state functional and structural MR imaging study. Radiology 281(1):185–192PubMedGoogle Scholar
  59. 59.
    Contreras J, Goñi J, Risacher S, Amico E, Yoder K, Dzemidzic M, West J, McDonald B, Farlow M, Sporns O, Saykin A (2017) Cognitive complaints in older adults at risk for Alzheimer’s disease are associated with altered resting-state networks. Alzheimers Dement 6:40–49Google Scholar
  60. 60.
    Hu X, Uhle F, Fliessbach K, Wagner M, Han Y, Weber B, Jessen F (2017) Reduced future-oriented decision making in individuals with subjective cognitive decline: a functional MRI study. Alzheimers Dement 6:222–231Google Scholar
  61. 61.
    Snitz BE, Lopez OL, McDade E, Becker JT, Cohen AD, Price JC, Mathis CA, Klunk WE (2015) Amyloid-beta imaging in older adults presenting to a memory clinic with subjective cognitive decline: a pilot study. J Alzheimers Dis 48(Suppl 1):S151–S159. PubMedPubMedCentralGoogle Scholar
  62. 62.
    Buckley RF, Hanseeuw B, Schultz AP, Vannini P, Aghjayan SL, Properzi MJ, Jackson JD, Mormino EC, Rentz DM, Sperling RA, Johnson KA, Amariglio RE (2017) Region-specific association of subjective cognitive decline with tauopathy independent of global beta-amyloid burden. JAMA Neurol 74(12):1455–1463. PubMedPubMedCentralGoogle Scholar
  63. 63.
    Caldwell C, Yao J, Brinton R (2015) Targeting the prodromal stage of Alzheimer’s disease: bioenergetic and mitochondrial opportunities. Neurotherapeutics 12(1):66–80PubMedGoogle Scholar
  64. 64.
    Colijn M, Grossberg G (2015) Amyloid and tau biomarkers in subjective cognitive impairment. J Alzheimers Dis 47(1):1–8PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyQilu Hospital of Shandong UniversityJinanChina
  2. 2.Department of GerontologyQilu Hospital of Shandong UniversityJinanChina
  3. 3.Department of Neurologythe First Hospital of Tsinghua UniversityBeijingChina

Personalised recommendations