Neurological Sciences

, Volume 39, Issue 12, pp 2141–2149 | Cite as

Association of CD1 and FcγR gene polymorphisms with Guillain–Barré syndrome susceptibility: a meta-analysis

  • Liang Zhang
  • Lijun Liu
  • Hong Li
  • Lei Guo
  • Qing Yu
  • Jijun TengEmail author
Original Article


CD1 and immunoglobulin G Fc receptor (FcγR) genes have been proposed to be involved in the pathogenesis of Guillain–Barré syndrome (GBS). However, results of different studies are conflicting. This meta-analysis aimed to systematically examine the association between CD1 and FcγR gene polymorphisms and GBS. A comprehensive literature search through PubMed, EmBase, ScienceDirect, and Cochrane Library was performed to identify all eligible studies. The strength of association was assessed by pooled odds ratios (ORs) and corresponding 95% confidence intervals (95% CI) in allelic, dominant, recessive, homozygous and heterozygous genetic models. Four case–control studies about polymorphisms of exon 2 in CD1A and CD1E genes and GBS risk and five studies (six cohorts) about FcγR gene polymorphisms and GBS risk were included in this meta-analysis. The association between exon 2 of CD1E gene polymorphism and GBS was marginally significant in Caucasians in allelic model (OR = 1.193, 95% CI = 1.001–1.423, P = 0.049). FcγRIIA gene polymorphism was significantly associated with GBS risk in Caucasians under allelic model (OR = 1.553, 95% CI = 1.018–2.368, P = 0.041) and dominant model (OR = 1.320, 95% CI = 1.027–1.697, P = 0.030). However, no significant association was found between polymorphisms in exon 2 of CD1A, FcγRIIIA and FcγRIIIB genes and GBS susceptibility. This meta-analysis suggested that FcγRIIA gene polymorphism may contribute to GBS risk in Caucasians and revealed a certain trend toward significance in the association of exon 2 of CD1E gene with GBS in Caucasians. Further studies with larger sample size are required to validate these results.


Guillain–Barré syndrome CD1 Fcgr Polymorphism Meta-analysis 



We would like to express our sincere gratitude to all the participants for their efforts in this article.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Berg BVD, Walgaard C, Drenthen J, Fokke C, Jacobs BC, Doorn PAV (2014) Guillain–Barré syndrome: pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol 10(8):469–482CrossRefPubMedGoogle Scholar
  2. 2.
    Cosi V, Versino M (2006) Guillain-Barre syndrome. Neurological Sciences:Official Journal of the Italian Neurol Sci 27(Suppl 1):S47–S51Google Scholar
  3. 3.
    Nagamine S, Fujiwara Y, Shimizu T, Kawata A, Wada K, Isozaki E, Kabuta T (2015) Association of ubiquitin carboxy-terminal hydrolase-L1 in cerebrospinal fluid with clinical severity in a cohort of patients with Guillain-Barre syndrome. Neurol Sci 36(6):921–926CrossRefPubMedGoogle Scholar
  4. 4.
    Fukae J, Tsugawa J, Ouma S, Umezu T, Kusunoki S, Tsuboi Y (2016) Guillain-Barre and Miller Fisher syndromes in patients with anti-hepatitis E virus antibody: a hospital-based survey in Japan. Neurological sciences: official journal of the Italian Neurol Sci 37(11):1849–1851Google Scholar
  5. 5.
    Wang Y, Sun S, Zhu J, Cui L, Zhang H (2015) Biomarkers of Guillain-Barré syndrome: some recent progress, more still to be explored. Mediat Inflamm 2015:564098Google Scholar
  6. 6.
    Liu H, Xing Y, Guo Y, Liu P, Zhang H, Xue B, Shou J, Qian J, Peng J, Wang R (2016) Polymorphisms in exon 2 of CD1 genes are associated with susceptibility to Guillain-Barré syndrome. J Neurol Sci 369:39–42CrossRefPubMedGoogle Scholar
  7. 7.
    van Sorge NM, Wl VDP, Jansen MD, Geleijns KP, Kalmijn S, Hughes RA, Rees JH, Pritchard J, Vedeler CA, Myhr KM (2005) Severity of Guillain-Barré syndrome is associated with Fc gamma receptor III polymorphisms. J Neuroimmunol 162(1):157–164CrossRefPubMedGoogle Scholar
  8. 8.
    Wu L, Zhou Y, Qin C, Hu B (2012) The effect of TNF-alpha, FcγR and CD1 polymorphisms on Guillain-Barré syndrome risk: evidences from a meta-analysis. J Neuroimmunol 243(1–2):18–24CrossRefPubMedGoogle Scholar
  9. 9.
    Facciotti F, Cavallari M, Angénieux C, Garcia-Alles LF, Signorino-Gelo F, Angman L, Gilleron M, Prandi J, Puzo G, Panza L (2011) Fine tuning by human CD1e of lipid-specific immune responses. Proc Natl Acad Sci U S A 108(34):14228–14233CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mori L, Lepore M, Libero GD (2016) The immunology of CD1- and MR1-restricted T cells. Annu Rev Immunol 34(1):479–510CrossRefPubMedGoogle Scholar
  11. 11.
    Han M, Hannick LI, Dibrino M, Robinson MA (1999) Polymorphism of human CD1 genes. Tissue Antigens 54(2):122–127CrossRefPubMedGoogle Scholar
  12. 12.
    Gessner JE, Heiken H, Tamm A, Schmidt RE (1998) The IgG Fc receptor family. Ann Hematol 76(6):231–248CrossRefPubMedGoogle Scholar
  13. 13.
    Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19(1):275–290CrossRefPubMedGoogle Scholar
  14. 14.
    Wl VDP, Lh VDB, Scheepers RH, Jg VDB, van Doorn PA, Van KR, Mc VDB, Wokke JH, Jg VDW (2000) IgG receptor IIa alleles determine susceptibility and severity of Guillain-Barre syndrome. Neurology 54(8):1661–1665CrossRefGoogle Scholar
  15. 15.
    Duits AJ, Bootsma H, Derksen RH, Spronk PE, Kater L, Kallenberg CG, Capel PJ, Westerdaal NA, Spierenburg GT, Gmeligmeyling FH (1995) Skewed distribution of IgG Fc receptor IIa (CD32) polymorphism is associated with renal disease in systemic lupus erythematosus patients. Arthritis Rheum 38(12):1832–1836CrossRefPubMedGoogle Scholar
  16. 16.
    Nieto A, Caliz R, Pascual MJ, Mataran L, Garcia S, Martin J (2000) Involvement of Fcγ receptor IIIA genotypes in susceptibility to rheumatoid arthritis. Arthritis Rheum 43(4):735–739CrossRefPubMedGoogle Scholar
  17. 17.
    Rahman MI, Jahan I, Khalid MM, Jahan I, Ahammad RU, Nahar S, Islam Z (2018) CD1A and CD1E gene polymorphisms are not associated with susceptibility to Guillain-Barré syndrome in the Bangladeshi population. J Neuroimmunol 314:8–12CrossRefPubMedGoogle Scholar
  18. 18.
    Caporale CM, Papola F, Fioroni MA, Aureli A, Giovannini A, Notturno F, Adorno D, Caporale V, Uncini A (2006) Susceptibility to Guillain-Barre syndrome is associated to polymorphisms of CD1 genes. J Neuroimmunol 177(1–2):112–118CrossRefPubMedGoogle Scholar
  19. 19.
    Mansour LA, Girgis MY, Abdulhay M, Eleinein EI, Elhawary R, Hanna MO (2016) Polymorphisms of immunoglobulin G Fc receptors in pediatric Guillain-Barré syndrome. Neuropediatrics 47(03):151–156CrossRefPubMedGoogle Scholar
  20. 20.
    Junior DM, Ferreira LC, Freire-Neto FP, Jeronimo SM (2016) No association between FCGR2A and FCGR3A polymorphisms in Guillain-Barré syndrome in a Brazilian population. J Neuroimmunol 298:160–164CrossRefGoogle Scholar
  21. 21.
    Zintzaras E, Ioannidis JP (2005) HEGESMA: genome search meta-analysis and heterogeneity testing. Bioinformatics 21(18):3672–3673CrossRefPubMedGoogle Scholar
  22. 22.
    Vandenbroucke JP (1997) Bias in meta-analysis detected by a simple, graphical test. Experts’ views are still needed. Br Med J 315(7109):629–634CrossRefGoogle Scholar
  23. 23.
    Kuijf ML, Geleijns K, Ennaji N, Van RW, van Doorn PA, Jacobs BC (2008) Susceptibility to Guillain-Barre syndrome is not associated with CD1A and CD1E gene polymorphisms. J Neuroimmunol 205(1–2):110–112CrossRefPubMedGoogle Scholar
  24. 24.
    Vedeler CA, Raknes G, Myhr KM, Nyland H (2000) IgG Fc-receptor polymorphisms in Guillain-Barré syndrome. Neurology 55(5):705–707CrossRefPubMedGoogle Scholar
  25. 25.
    Willison HJ, Jacobs BC, Van Doorn PA (2006) Guillain-Barré syndrome. Lancet 388(10045):1653–1666Google Scholar
  26. 26.
    van Doorn PA, Ruts L, Jacobs BC (2008) Clinical features, pathogenesis, and treatment of Guillain-Barré syndrome. Lancet Neurol 7(10):939–950CrossRefPubMedGoogle Scholar
  27. 27.
    Ang CW, van Doorn PA, Endtz HP, Merkies IS, Jacobs BC, de Klerk MA, Van KR, Fg VDM (2000) A case of Guillain-Barre syndrome following a family outbreak of Campylobacter jejuni enteritis. J Neuroimmunol 111(1):229–233CrossRefPubMedGoogle Scholar
  28. 28.
    Seshadri C, Shenoy M, Wells RD, Hensleymcbain T, Andersennissen E, Mcelrath MJ, Cheng TY, Moody DB, Hawn TR (2013) Human CD1a deficiency is common and genetically regulated. J Immunol 191(4):1586–1593CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Reinink P, Rhijn IV (2016) Mammalian CD1 and MR1 genes. Immunogenetics 68(8):1–9CrossRefGoogle Scholar
  30. 30.
    Jamshidian A, Nikseresht AR, Vessal M, Kamalisarvestani E (2010) Association of CD1A +622 T/C, +737 G/C and CD1E +6129 A/G genes polymorphisms with multiple sclerosis. Immunol Investig 39(8):874–889CrossRefGoogle Scholar
  31. 31.
    De Angelis MV, Notturno F, Caporale CM, Pace M, Uncini A (2007) Polymorphisms of CD1 genes in chronic dysimmune neuropathies. J Neuroimmunol 186(1):161–163CrossRefPubMedGoogle Scholar
  32. 32.
    Sanders LA, Feldman RG, Voorhorstogink MM, Haas MD, Rijkers GT, Capel PJ, Zegers BJ, Winkel JGVD (1995) Human immunoglobulin G (IgG) Fc receptor IIA (CD32) polymorphism and IgG2-mediated bacterial phagocytosis by neutrophils. Infect Immun 63(1):73–81PubMedPubMedCentralGoogle Scholar
  33. 33.
    Wu J, Edberg JC, Redecha P, Bansal V, Guyre PM, Coleman K, Salmon JE, Kimberly RP (1997) A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Investig 100(5):1059–1070CrossRefPubMedGoogle Scholar
  34. 34.
    Salmon JE, Edberg JC, Brogle NL, Kimberly RP (1992) Allelic polymorphisms of human Fc gamma receptor IIA and Fc gamma receptor IIIB. Independent mechanisms for differences in human phagocyte function. J Clin Investig 89(4):1274–1281CrossRefPubMedGoogle Scholar
  35. 35.
    Sinha S, Prasad KN, Jain D, Nyati KK, Pradhan S, Agrawal S (2010) Immunoglobulin IgG Fc-receptor polymorphisms and HLA class II molecules in Guillain-Barré syndrome. Acta Neurol Scand 122(1):21–26CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyAffiliated Hospital of Qingdao UniversityQingdaoChina
  2. 2.Department of UrologyAffiliated Hospital of Qingdao UniversityQingdaoChina
  3. 3.Department of EndocrinologyAffiliated Hospital of Qingdao UniversityQingdaoChina

Personalised recommendations