Neurological Sciences

, Volume 39, Issue 11, pp 1895–1902 | Cite as

Profiling of microRNAs modulating cytomegalovirus infection in astrocytoma patients

  • Ravindra Pramod Deshpande
  • Manas Panigrahi
  • Chandrasekhar Y.B.V.K.
  • Phanithi Prakash BabuEmail author
Original Article


Astrocytoma is recognized as the most common neoplasm of the brain with aggressive progression. The therapeutic regime for glioblastoma, the most aggressive astrocytoma, often consists of aggressive chemo and radiotherapy. The present holistic approaches, however, have failed to influence the quality life of patients. Therefore, it is necessary to understand the underlying mechanisms of its progression for updated therapeutic evaluation. Human cytomegalovirus (HCMV) is reported to be associated with glioblastoma progression. The hypothesis still remains controversial due to the lack of concrete evidences. Here, we report the profile of miRNAs encoded by human host and the cytomegalovirus (CMV) involved in modulation of CMV infection in surgically resected human astrocytoma tissue samples of various malignancy grades (n = 24). Total RNA from the control brain and tumor tissues was extracted by TriZol reagent. The expression levels of the mature form of miRNA were detected by real-time PCR. Primarily, we found the upregulation of miR-210-3p, miR-155-5p, miR-UL-112-3p, miR-183-5p, and miR-223-5p in high-grade astrocytic tumors as compared with low-grade tumor tissues. miR-214-3p is significantly expressed in control brain tissues and its expression decreased with astrocytoma grade progression. This miRNA was reported to be associated with antiviral proprieties. Among CMV-encoded miRNA, miR-UL-112-3p was significantly upregulated in glioblastoma tissue samples and may be involved in providing immune escape to the virus as well as involved in modulating the immune microenvironment of glioblastoma. Taken together, we conclude the possible involvement of miRNAs in modulating the CMV dependent astrocytoma progression.


Glioblastoma Astrocytoma CMV miRNA RT PCR 


Author contributions

Conception and design: Ravindra Pramod Deshpande

Provision of study material: Manas Panigrahi, Chandrasekhar Y.B.V.K.

Collection and assembly of data: Ravindra Pramod Deshpande

Analysis and interpretation of data: Ravindra Pramod Deshpande, Phanithi Prakash Babu

Manuscript writing: Ravindra Pramod Deshpande, Phanithi Prakash Babu

Final approval: All authors


Authors thank financial assistance from Department of Science and technology (DST-India) (Grant nos. SB/EMEQ-257/2013, SR/CSRI/196/2016), Department of Biotechnology (DBT-India) (Grant nos. BT/PR18168/MED/29/1064/2016, BT/PR13111/MED/29/149/2009), Indian Council of Medical research (ICMR-India) (30/2/2010-01710/SIC/PI/N/162) for lab funding. RDP is thankful to Department of Biotechnology (DBT-India) (Award no: DBT JRF/2011-12/95) for student fellowship.

Compliance with ethical standards

Ethical permissions

The authors acknowledge KIMS Foundation Research Center (KFRC) and Institutional Ethical Committee (IEC), University of Hyderabad for granting the ethical permissions. Performed studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

All authors declare that there are no conflicts of interest.


  1. 1.
    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Liu B, Pang B, Liu H, Arakawa Y, Zhang R, Feng B, Zhong P, Murata D, Fan H, Xin T, Zhao G, Liu W, Guo H, Luan L, Xu S, Miyamoto S, Pang Q (2015) High mobility group A1 expression shows negative correlation with recurrence time in patients with glioblastoma multiforme. Pathol Res Pract 211(8):596–600CrossRefGoogle Scholar
  3. 3.
    Chandana SR, Movva S, Arora M, Singh T (2008) Primary brain tumors in adults. Am Fam Physician 77(10):1423–1430PubMedGoogle Scholar
  4. 4.
    Auffinger B, Spencer D, Pytel P, Ahmed AU, Lesniak MS (2015) The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev Neurother 15(7):741–752. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Deshpande RP, Babu D, Panigrahi M, Chandra Sekhar YB, Prakash BP (2016) Brain tumors incidences and a retrospective clinical analysis from a tertiary hospital in India. J Neuro-Oncol 129(2):383–387. CrossRefGoogle Scholar
  6. 6.
    Sinclair J, Sissons P (2006) Latency and reactivation of human cytomegalovirus. The Journal of general virology 87(Pt 7):1763–1779. CrossRefPubMedGoogle Scholar
  7. 7.
    Jean Beltran PM, Cristea IM (2014) The life cycle and pathogenesis of human cytomegalovirus infection: lessons from proteomics. Expert review of proteomics 11(6):697–711. CrossRefPubMedGoogle Scholar
  8. 8.
    Samanta M, Harkins L, Klemm K, Britt WJ, Cobbs CS (2003) High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J Urol 170(3):998–1002. CrossRefPubMedGoogle Scholar
  9. 9.
    Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH, Nabors LB, Cobbs CG, Britt WJ (2002) Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 62(12):3347–3350PubMedGoogle Scholar
  10. 10.
    Zafiropoulos A, Tsentelierou E, Billiri K, Spandidos DA (2003) Human herpes viruses in non-melanoma skin cancers. Cancer Lett 198(1):77–81CrossRefGoogle Scholar
  11. 11.
    Harkins L, Volk AL, Samanta M, Mikolaenko I, Britt WJ, Bland KI, Cobbs CS (2002) Specific localisation of human cytomegalovirus nucleic acids and proteins in human colorectal cancer. Lancet 360(9345):1557–1563. CrossRefPubMedGoogle Scholar
  12. 12.
    Roche JK, Cheung KS, Boldogh I, Huang ES, Lang DJ (1981) Cytomegalovirus: detection in human colonic and circulating mononuclear cells in association with gastrointestinal disease. Int J Cancer 27(5):659–667CrossRefGoogle Scholar
  13. 13.
    Sabatier J, Uro-Coste E, Pommepuy I, Labrousse F, Allart S, Tremoulet M et al (2005) Detection of human cytomegalovirus genome and gene products in central nervous system tumours. Br J Cancer 92(4):747–750. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Grail A, Norval M (1985) Elution of cytomegalovirus antibodies from adenocarcinoma of the colon. Gut 26(10):1053–1058CrossRefGoogle Scholar
  15. 15.
    Hart H, Neill WA, Norval M (1982) Lack of association of cytomegalovirus with adenocarcinoma of the colon. Gut 23(1):21–30CrossRefGoogle Scholar
  16. 16.
    Lau SK, Chen YY, Chen WG, Diamond DJ, Mamelak AN, Zaia JA, Weiss LM (2005) Lack of association of cytomegalovirus with human brain tumors. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 18(6):838–843. CrossRefGoogle Scholar
  17. 17.
    Poltermann S, Schlehofer B, Steindorf K, Schnitzler P, Geletneky K, Schlehofer JR (2006) Lack of association of herpesviruses with brain tumors. J Neurovirol 12(2):90–99. CrossRefPubMedGoogle Scholar
  18. 18.
    Lehrer S, Green S, Rosenzweig KE, Rendo A (2015 Feb) No circulating human cytomegalovirus in 14 cases of glioblastoma. Neuro-Oncology 17(2):320. CrossRefPubMedGoogle Scholar
  19. 19.
    Bhattacharjee B, Renzette N, Kowalik TF (2012) Genetic analysis of cytomegalovirus in malignant gliomas. J Virol 86(12):6815–6824. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ranganathan P, Clark PA, Kuo JS, Salamat MS, Kalejta RF (2012) Significant association of multiple human cytomegalovirus genomic Loci with glioblastoma multiforme samples. J Virol 86(2):854–864. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cobbs CS, Soroceanu L, Denham S, Zhang W, Britt WJ, Pieper R, Kraus MH (2007) Human cytomegalovirus induces cellular tyrosine kinase signaling and promotes glioma cell invasiveness. J Neuro-Oncol 85(3):271–280. CrossRefGoogle Scholar
  22. 22.
    Cobbs CS, Soroceanu L, Denham S, Zhang W, Kraus MH (2008) Modulation of oncogenic phenotype in human glioma cells by cytomegalovirus IE1-mediated mitogenicity. Cancer Res 68(3):724–730. CrossRefPubMedGoogle Scholar
  23. 23.
    Cobbs C, Khan S, Matlaf L, McAllister S, Zider A, Yount G, Rahlin K, Harkins L, Bezrookove V, Singer E, Soroceanu L (2014) HCMV glycoprotein B is expressed in primary glioblastomas and enhances growth and invasiveness via PDGFR-alpha activation. Oncotarget 5(4):1091–1100CrossRefGoogle Scholar
  24. 24.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Stern-Ginossar N, Saleh N, Goldberg MD, Prichard M, Wolf DG, Mandelboim O (2009) Analysis of human cytomegalovirus-encoded microRNA activity during infection. J Virol 83(20):10684–10693CrossRefGoogle Scholar
  26. 26.
    Sacheli R, Nguyen L, Borgs L, Vandenbosch R, Bodson M, Lefebvre P, Malgrange B (2009) Expression patterns of miR-96, miR-182 and miR-183 in the development inner ear. Gene expression patterns : GEP 9(5):364–370. CrossRefPubMedGoogle Scholar
  27. 27.
    Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Saleh N, Biton M, Horwitz E, Prokocimer Z, Prichard M, Hahn G, Goldman-Wohl D, Greenfield C, Yagel S, Hengel H, Altuvia Y, Margalit H, Mandelboim O (2007) Host immune system gene targeting by a viral miRNA. Science 317(5836):376–381. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fu M, Gao Y, Zhou Q, Zhang Q, Peng Y, Tian K, Wang J, Zheng X (2014) Human cytomegalovirus latent infection alters the expression of cellular and viral microRNA. Gene 536(2):272–278. CrossRefPubMedGoogle Scholar
  29. 29.
    Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM, Ma X, Bond Lau W, Rong R, Yu X, Wang B, Li Y, Xiao C, Zhang M, Wang S, Yu L, Chen AF, Yang X, Cai J (2011) Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 124(2):175–184. CrossRefPubMedGoogle Scholar
  30. 30.
    Deshpande RP, Chandra Sekhar YB, Panigrahi M, Babu PP (2016) SIRP alpha protein downregulates in human astrocytoma: presumptive involvement of Hsa-miR-520d-5p and Hsa-miR-520d-3p. Mol Neurobiol 54:8162–8169. CrossRefPubMedGoogle Scholar
  31. 31.
    Gyongyosi A, Docs O, Czimmerer Z, Orosz L, Horvath A, Torok O et al (2014) Measuring expression levels of small regulatory RNA molecules from body fluids and formalin-fixed, paraffin-embedded samples. Methods Mol Biol 1182:105–119. CrossRefPubMedGoogle Scholar
  32. 32.
    Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rapp F, Li JL (1975) Demonstration of the oncogenic potential of herpes simplex viruses and human cytomegalovirus. Cold Spring Harb Symp Quant Biol 39(Pt 2):747–763PubMedGoogle Scholar
  34. 34.
    Geder L, Rapp F (1977) Evidence for nuclear antigens in cytomegalovirus-transformed human cells. Nature 265(5590):184–186CrossRefGoogle Scholar
  35. 35.
    Geder KM, Lausch R, O'Neill F, Rapp F (1976) Oncogenic transformation of human embryo lung cells by human cytomegalovirus. Science 192(4244):1134–1137CrossRefGoogle Scholar
  36. 36.
    Goerig NL, Frey B, Uberla K, Gaipl U, Fietkau R (2017) A clinician’s plea to test glioma patients for CMV. Neuro-Oncology 19(9):1282–1283CrossRefGoogle Scholar
  37. 37.
    Zavala-Vega S, Castro-Escarpulli G, Hernandez-Santos H, Salinas-Lara C, Palma I, Mejia-Arangure JM et al (2017) An overview of the infection of CMV, HSV 1/2 and EBV in Mexican patients with glioblastoma multiforme. Pathol Res Pract 213(3):271–276CrossRefGoogle Scholar
  38. 38.
    Mitchell DA, Xie W, Schmittling R, Learn C, Friedman A, McLendon RE et al (2008) Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro-Oncology 10(1):10–18. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Goerig NL, Frey B, Korn K, Fleckenstein B, Uberla K, Schmidt MA et al (2016) Frequent occurrence of therapeutically reversible CMV-associated encephalopathy during radiotherapy of the brain. Neuro-Oncology 18(12):1664–1672. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wick W, Wick A, Platten M (2014 Jan) Challenging cytomegalovirus data in glioblastoma. Neuro-Oncology 16(1):165. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kawano Y, Kawada J, Kamiya Y, Suzuki M, Torii Y, Kimura H, Ito Y (2016) Analysis of circulating human and viral microRNAs in patients with congenital cytomegalovirus infection. J Perinatol: official journal of the California Perinatal Association 36(12):1101–1105. CrossRefGoogle Scholar
  42. 42.
    Nallamshetty S, Chan SY, Loscalzo J (2013) Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic Biol Med 64:20–30. CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sen CK, Gordillo GM, Khanna S, Roy S (2009) Micromanaging vascular biology: tiny microRNAs play big band. J Vasc Res 46(6):527–540. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Qin B, Yang H, Xiao B (2012) Role of microRNAs in endothelial inflammation and senescence. Mol Biol Rep 39(4):4509–4518. CrossRefPubMedGoogle Scholar
  45. 45.
    Dhuruvasan K, Sivasubramanian G, Pellett PE (2011) Roles of host and viral microRNAs in human cytomegalovirus biology. Virus Res 157(2):180–192. CrossRefPubMedGoogle Scholar
  46. 46.
    Zawislak CL, Beaulieu AM, Loeb GB, Karo J, Canner D, Bezman NA, Lanier LL, Rudensky AY, Sun JC (2013) Stage-specific regulation of natural killer cell homeostasis and response against viral infection by microRNA-155. Proc Natl Acad Sci U S A 110(17):6967–6972. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Huang BS, Luo QZ, Han Y, Li XB, Cao LJ, Wu LX (2013) microRNA-223 promotes the growth and invasion of glioblastoma cells by targeting tumor suppressor PAX6. Oncol Rep 30(5):2263–2269. CrossRefPubMedGoogle Scholar
  48. 48.
    Santhakumar D, Forster T, Laqtom NN, Fragkoudis R, Dickinson P, Abreu-Goodger C, Manakov SA, Choudhury NR, Griffiths SJ, Vermeulen A, Enright AJ, Dutia B, Kohl A, Ghazal P, Buck AH (2010) Combined agonist-antagonist genome-wide functional screening identifies broadly active antiviral microRNAs. Proc Natl Acad Sci U S A 107(31):13830–13835. CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Grey F, Tirabassi R, Meyers H, Wu G, McWeeney S, Hook L et al (2010) A viral microRNA down-regulates multiple cell cycle genes through mRNA 5′UTRs. PLoS Pathog 6(6):1000967CrossRefGoogle Scholar
  50. 50.
    Nachmani D, Lankry D, Wolf DG, Mandelboim O (2010) The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nat Immunol 11(9):806–813. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biotechnology and Bioinformatics, School of Life SciencesUniversity of HyderabadHyderabadIndia
  2. 2.Krishna Institute of Medical SciencesSecunderabadIndia

Personalised recommendations