Neurological Sciences

, Volume 39, Issue 9, pp 1547–1550 | Cite as

Quantification of dysarthrοphonia in a Cypriot family with autosomal recessive hereditary spastic paraplegia associated with a homozygous SPG11 mutation

  • Kostas KonstantopoulosEmail author
  • Eleni Zamba-Papanicolaou
  • Kyproula Christodoulou
Original Article



Dysarthrophonia is often reported by hereditary spastic paraplegia (HSP) patients with SPG11 mutations but it has been poorly investigated.


The goal of this study was to investigate dysarthrophonia in SPG11 patients using quantitative measures. The voice/speech of two patients and a non-affected mutation carrier was recorded and analyzed using electroglottography (EGG) and speech acoustics.


Dysarthrophonia showed a higher standard deviation of the average fundamental frequency, a three to eight times higher jitter, a 80–110 Hz higher mean fundamental frequency, and a two times higher fundamental frequency range. Diadochokinesis showed a pattern of a two to three times increase in the mean duration of the release burst of the phonemes /p/, /t/, /k/ as well as a 1.5 time increase in the mean vowel duration of the syllables /pa/, /ta/, /ka/.


Non-invasive physiological methods (EGG and speech acoustics) offer essential tools for the assessment of dysarthrophonia in SPG11 patients.


Hereditary spastic paraplegia Dysarthrophonia Electroglottography Acoustics 


  1. 1.
    Stevamin G, Azzedine H, Denora P et al (2008) Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. Brain 131:722–784Google Scholar
  2. 2.
    Finsterer J, Löscher W, Quasthoff S, Wanschitz J, Auer-Grumbach M, Stevamin G (2012) Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J Neurol Sci 318:1–18CrossRefPubMedGoogle Scholar
  3. 3.
    Fink JK (2013) Hereditary spastic paraplegia: clinic-pathologic features and emerging molecular mechanisms. Acta Neuropathol 126:307–328CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    De Souza PVS, de Rezende Pinto WBV, de Rezende Batistella GN, Bortholin T, Oliveira ASB (2017) Hereditary spastic paraplegia: clinical and genetic hallmarks. Cerebellum 16:525–551CrossRefPubMedGoogle Scholar
  5. 5.
    Stevamin G, Santorelli FM, Azzedine H et al (2007) Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet 39(3):366–372CrossRefGoogle Scholar
  6. 6.
    Hehr U, Bauer P, Winner B, Schule R, Olmez A, Koehler W, Uyanik G, Engel A, Lenz D, Seibel A, Hehr A, Ploetz S, Gamez J, Rolfs A, Weis J, Ringer TM, Bonin M, Schuierer G, Marienhagen J, Bogdahn U, Weber BHF, Topaloglu H, Schols L, Riess O, Winkler J (2007) Long-term course and mutational spectrum of spatacsin-linked spastic paraplegia. Ann Neurol 62(6):656–665CrossRefPubMedGoogle Scholar
  7. 7.
    Kara E, Tucci A, Manzoni C, Lynch DS, Elpidorou M, Bettencourt C, Chelban V, Manole A, Hamed SA, Haridy NA, Federoff M, Preza E, Hughes D, Pittman A, Jaunmuktane Z, Brandner S, Xiromerisiou G, Wiethoff S, Schottlaender L, Proukakis C, Morris H, Warner T, Bhatia KP, Korlipara LVP, Singleton AB, Hardy J, Wood NW, Lewis PA, Houlden H (2016) Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain 139:1904–1918CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Du J, Hu YC, Tang BS, Jiang H, Shen L (2018) Identification of novel SPG11 mutations in a cohort of Chinese families with hereditary spastic paraplegia. Int J Neurosci 128(2):146–150CrossRefPubMedGoogle Scholar
  9. 9.
    Pensato V, Castellotti B, Gellera C, Pareyson D, Ciano C, Nanetti L, Salsano E, Piscosquito G, Sarto E, Eoli M, Moroni I, Soliveri P, Lamperti E, Chiapparini L, di Bella D, Taroni F, Mariotti C (2014) Overlapping phenotypes in complex spastic paraplegias SPG11, SPG15, SPG35 and SPG48. Brain 137:1907–1920CrossRefPubMedGoogle Scholar
  10. 10.
    Konstantopoulos K, Vikelis M, Seikel JA, Mitsikostas DD (2010) The existence of phonatory instability in multiple sclerosis: an acoustic and electroglottographic study. Neurol Sci 31:259–268CrossRefPubMedGoogle Scholar
  11. 11.
    Robert D, Pouget J, Giovanni A, Azulay JP, Triglia JM (1999) Quantitative voice analysis in the assessment of bulbar involvement in amyotrophic lateral sclerosis. Acta Otolaryngol 119:724–731CrossRefPubMedGoogle Scholar
  12. 12.
    Konstantopoulos K, Christou YP, Vogazianos P, Zamba-Papanicolaou E, Kleopa KA (2017) A quantitative method for the assessment of dysarthrophonia in myasthenia gravis. J Neurol Sci 377:42–46CrossRefPubMedGoogle Scholar
  13. 13.
    Brendel B, Synofzik M, Ackermann H, Lindig T, Schölderle T, Schöls L, Ziegler W (2015) Comparing speech characteristics in spinocerebellar ataxias type 3 and type 6 with Friedreich ataxia. J Neurol 262(1):21–26CrossRefPubMedGoogle Scholar
  14. 14.
    Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198CrossRefPubMedGoogle Scholar
  15. 15.
    Enderby P, Palmer R (2008) Frenchay dysarthria assessment. pro-Ed, AustinGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.European University CyprusNicosiaCyprus
  2. 2.Neurology Clinic DThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
  3. 3.Neurogenetics DepartmentThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
  4. 4.Cyprus School of Molecular MedicineThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus

Personalised recommendations