Therapeutic potential of vitamin E and its derivatives in traumatic brain injury-associated dementia

  • Jan Dobrovolny
  • Martin Smrcka
  • Julie Bienertova-Vasku
Review Article
  • 60 Downloads

Abstract

Traumatic brain injury is one of the most common causes for intervention in neurosurgery. Apart from its acute consequence, it can represent a further burden on individuals as well as society by being associated with significant comorbidity—mainly early-onset dementia. Oxidative stress is one of the crucial mechanisms conferring the damage to nervous tissue, and it is believed it could be, to some extent, influenced by dietary composition, largely by antioxidants contained in the diet. Under stressful conditions, cell-derived reactive oxygen species in the brain can induce the formation of lipid peroxides and the shifting of redox homeostasis. This review discusses the potential of vitamin E as a potent antioxidant and its derived molecules, including vitamin E-based lazaroids, in traumatic brain injury, summarizing the current state of knowledge of its role in TBI-associated dementia.

Keywords

Traumatic brain injury Vitamin E α-Tocopherol Oxidative stress Dementia Lazaroids 

Notes

Acknowledgements

We would like to thank the CETOCOEN PLUS project (CZ.02.1.01/0.0/0.0/15_003/0000469). The RECETOX research infrastructure was supported by the Ministry of Education, Youth and Sports of the Czech Republic (LM2011028).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cassidy JD, Carroll LJ, Peloso PM, Borg J, von Holst H, Holm L, Kraus J, Coronado V (2004) Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med 36:28–60CrossRefGoogle Scholar
  2. 2.
    Li W, Risacher SL, McAllister TW, Saykin AJ (2016) Traumatic brain injury and age at onset of cognitive impairment in older adults. J Neurol 263:1280–1285.  https://doi.org/10.1007/s00415-016-8093-4 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    LoBue C, Cullum CM, Didehbani N et al (2017) Neurodegenerative dementias after traumatic brain injury. J Neuropsychiatry Clin Neurosci.  https://doi.org/10.1176/appi.neuropsych.17070145
  4. 4.
    Wood RL (2017) Accelerated cognitive aging following severe traumatic brain injury: a review. Brain Inj 31:1270–1278.  https://doi.org/10.1080/02699052.2017.1332387 CrossRefPubMedGoogle Scholar
  5. 5.
    Murray GD, Teasdale GM, Braakman R, Cohadon F, Dearden M, Iannotti F, Karimi A, Lapierre F, Maas A, Ohman J, Persson L, Servadei F, Stocchetti N, Trojanowski T, Unterberg A (1999) The European Brain Injury Consortium survey of head injuries. Acta Neurochir 141:223–236CrossRefPubMedGoogle Scholar
  6. 6.
    Tagliaferri F, Compagnone C, Korsic M, Servadei F, Kraus J (2006) A systematic review of brain injury epidemiology in Europe. Acta Neurochir 148:255–268; discussion 268.  https://doi.org/10.1007/s00701-005-0651-y CrossRefPubMedGoogle Scholar
  7. 7.
    Peeters W, van den Brande R, Polinder S, Brazinova A, Steyerberg EW, Lingsma HF, Maas AIR (2015) Epidemiology of traumatic brain injury in Europe. Acta Neurochir 157:1683–1696.  https://doi.org/10.1007/s00701-015-2512-7 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Andriessen TMJC, Jacobs B, Vos PE (2010) Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med 14:2381–2392.  https://doi.org/10.1111/j.1582-4934.2010.01164.x CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    AC M, Daneshvar DH (2015) The neuropathology of traumatic brain injury. Handb Clin Neurol 127:45–66.  https://doi.org/10.1016/B978-0-444-52892-6.00004-0 CrossRefGoogle Scholar
  10. 10.
    Bullock R, Chesnut RM, Clifton G et al (1996) Guidelines for the management of severe head injury. Brain Trauma Foundation. Eur J Emerg Med Off J Eur Soc Emerg Med 3:109–127CrossRefGoogle Scholar
  11. 11.
    Corrigan F, Arulsamy A, Teng J, Collins-Praino LE (2017) Pumping the brakes: neurotrophic factors for the prevention of cognitive impairment and dementia after traumatic brain injury. J Neurotrauma 34:971–986.  https://doi.org/10.1089/neu.2016.4589 CrossRefPubMedGoogle Scholar
  12. 12.
    Loane DJ, Faden AI (2010) Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci 31:596–604.  https://doi.org/10.1016/j.tips.2010.09.005 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Rabinowitz AR, Levin HS (2014) Cognitive sequelae of traumatic brain injury. Psychiatr Clin N Am 37:1–11.  https://doi.org/10.1016/j.psc.2013.11.004 CrossRefGoogle Scholar
  14. 14.
    Brown AW, Moessner AM, Mandrekar J, Diehl NN, Leibson CL, Malec JF (2011) A survey of very-long-term outcomes after traumatic brain injury among members of a population-based incident cohort. J Neurotrauma 28:167–176.  https://doi.org/10.1089/neu.2010.1400 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cantu RC (2001) Posttraumatic retrograde and anterograde amnesia: pathophysiology and implications in grading and safe return to play. J Athl Train 36:244–248PubMedPubMedCentralGoogle Scholar
  16. 16.
    Smith DH, Johnson VE, Stewart W (2013) Chronic neuropathologies of single and repetitive TBI: substrates of dementia? Nat Rev Neurol 9:211–221.  https://doi.org/10.1038/nrneurol.2013.29 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gardner RC, Burke JF, Nettiksimmons J, Kaup A, Barnes DE, Yaffe K (2014) Dementia risk after traumatic brain injury vs nonbrain trauma: the role of age and severity. JAMA Neurol 71:1490–1497.  https://doi.org/10.1001/jamaneurol.2014.2668 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ikonomovic MD, Uryu K, Abrahamson EE, Ciallella JR, Trojanowski JQ, Lee VMY, Clark RS, Marion DW, Wisniewski SR, DeKosky ST (2004) Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol 190:192–203.  https://doi.org/10.1016/j.expneurol.2004.06.011 CrossRefPubMedGoogle Scholar
  19. 19.
    Scott G, Ramlackhansingh AF, Edison P, Hellyer P, Cole J, Veronese M, Leech R, Greenwood RJ, Turkheimer FE, Gentleman SM, Heckemann RA, Matthews PM, Brooks DJ, Sharp DJ (2016) Amyloid pathology and axonal injury after brain trauma. Neurology 86:821–828.  https://doi.org/10.1212/WNL.0000000000002413 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185CrossRefPubMedGoogle Scholar
  21. 21.
    Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608.  https://doi.org/10.15252/emmm.201606210 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chakraborty S, Skolnick B, Narayan RK (2016) Neuroprotection trials in traumatic brain injury. Curr Neurol Neurosci Rep 16:29.  https://doi.org/10.1007/s11910-016-0625-x CrossRefPubMedGoogle Scholar
  23. 23.
    Chen X, Guo C, Kong J (2012) Oxidative stress in neurodegenerative diseases. Neural Regen Res 7:376–385.  https://doi.org/10.3969/j.issn.1673-5374.2012.05.009 PubMedPubMedCentralGoogle Scholar
  24. 24.
    Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18–S25.  https://doi.org/10.1038/nrn1434 CrossRefPubMedGoogle Scholar
  25. 25.
    Hardy J (2016) Catastrophic cliffs: a partial suggestion for selective vulnerability in neurodegenerative diseases. Biochem Soc Trans 44:659–661.  https://doi.org/10.1042/BST20150287 CrossRefPubMedGoogle Scholar
  26. 26.
    Singh M, Dang TN, Arseneault M, Ramassamy C (2010) Role of by-products of lipid oxidation in Alzheimer’s disease brain: a focus on acrolein. J Alzheimers Dis 21:741–756.  https://doi.org/10.3233/JAD-2010-100405 CrossRefPubMedGoogle Scholar
  27. 27.
    Galasko DR, Peskind E, Clark CM, Quinn JF, Ringman JM, Jicha GA, Cotman C, Cottrell B, Montine TJ, Thomas RG, Aisen P, Alzheimer’s Disease Cooperative Study (2012) Antioxidants for Alzheimer’s disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol 69:836–841.  https://doi.org/10.1001/archneurol.2012.85 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cruz-Haces M, Tang J, Acosta G, Fernandez J, Shi R (2017) Pathological correlations between traumatic brain injury and chronic neurodegenerative diseases. Transl Neurodegener 6:20.  https://doi.org/10.1186/s40035-017-0088-2 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hosomi A, Arita M, Sato Y, Kiyose C, Ueda T, Igarashi O, Arai H, Inoue K (1997) Affinity for alpha-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett 409:105–108CrossRefPubMedGoogle Scholar
  30. 30.
    McLaughlin PJ, Weihrauch JL (1979) Vitamin E content of foods. J Am Diet Assoc 75:647–665PubMedGoogle Scholar
  31. 31.
    Dutta A, Dutta SK (2003) Vitamin E and its role in the prevention of atherosclerosis and carcinogenesis: a review. J Am Coll Nutr 22:258–268CrossRefPubMedGoogle Scholar
  32. 32.
    Schmölz L, Birringer M, Lorkowski S, Wallert M (2016) Complexity of vitamin E metabolism. World J Biol Chem 7:14–43.  https://doi.org/10.4331/wjbc.v7.i1.14 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ulatowski L, Manor D (2013) Vitamin E trafficking in neurologic health and disease. Annu Rev Nutr 33:87–103.  https://doi.org/10.1146/annurev-nutr-071812-161252 CrossRefPubMedGoogle Scholar
  34. 34.
    Tanyel MC, Mancano LD (1997) Neurologic findings in vitamin E deficiency. Am Fam Physician 55:197–201PubMedGoogle Scholar
  35. 35.
    Burton GW, Joyce A, Ingold KU (1982) First proof that vitamin E is major lipid-soluble, chain-breaking antioxidant in human blood plasma. Lancet 2:327CrossRefPubMedGoogle Scholar
  36. 36.
    Traber MG, Atkinson J (2007) Vitamin E, antioxidant and nothing more. Free Radic Biol Med 43:4–15.  https://doi.org/10.1016/j.freeradbiomed.2007.03.024 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Christen S, Jiang Q, Shigenaga MK, Ames BN (2002) Analysis of plasma tocopherols alpha, gamma, and 5-nitro-gamma in rats with inflammation by HPLC coulometric detection. J Lipid Res 43:1978–1985CrossRefPubMedGoogle Scholar
  38. 38.
    Christen S, Woodall AA, Shigenaga MK, Southwell-Keely PT, Duncan MW, Ames BN (1997) γ-Tocopherol traps mutagenic electrophiles such as NOx and complements α-tocopherol: physiological implications. Proc Natl Acad Sci U S A 94:3217–3222CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Nishida Y, Yokota T, Takahashi T, Uchihara T, Jishage KI, Mizusawa H (2006) Deletion of vitamin E enhances phenotype of Alzheimer disease model mouse. Biochem Biophys Res Commun 350:530–536.  https://doi.org/10.1016/j.bbrc.2006.09.083 CrossRefPubMedGoogle Scholar
  40. 40.
    Fukui K, Kawakami H, Honjo T et al (2012) Vitamin E deficiency induces axonal degeneration in mouse hippocampal neurons. J Nutr Sci Vitaminol (Tokyo) 58:377–383CrossRefGoogle Scholar
  41. 41.
    McDaid DG, Kim E-M, Reid RE et al (2005) Parenteral antioxidant treatment preserves temporal discrimination following intrahippocampal aggregated Abeta(1-42) injections. Behav Pharmacol 16:237–242CrossRefPubMedGoogle Scholar
  42. 42.
    Arlt S, Müller-Thomsen T, Beisiegel U, Kontush A (2012) Effect of one-year vitamin C- and E-supplementation on cerebrospinal fluid oxidation parameters and clinical course in Alzheimer’s disease. Neurochem Res 37:2706–2714.  https://doi.org/10.1007/s11064-012-0860-8 CrossRefPubMedGoogle Scholar
  43. 43.
    Viña J, Lloret A, Giraldo E et al (2011) Antioxidant pathways in Alzheimer’s disease: possibilities of intervention. Curr Pharm Des 17:3861–3864CrossRefPubMedGoogle Scholar
  44. 44.
    Glasø M, Nordbø G, Diep L, Bøhmer T (2004) Reduced concentrations of several vitamins in normal weight patients with late-onset dementia of the Alzheimer type without vascular disease. J Nutr Health Aging 8:407–413PubMedGoogle Scholar
  45. 45.
    Hensley K, Barnes LL, Christov A, Tangney C, Honer WG, Schneider JA, Bennett DA, Morris MC (2011) Analysis of postmortem ventricular cerebrospinal fluid from patients with and without dementia indicates association of vitamin E with neuritic plaques and specific measures of cognitive performance. J Alzheimers Dis 24:767–774.  https://doi.org/10.3233/JAD-2011-101995 PubMedPubMedCentralGoogle Scholar
  46. 46.
    Perez L, Heim L, Sherzai A et al (2012) Nutrition and vascular dementia. J Nutr Health Aging 16:319–324CrossRefPubMedGoogle Scholar
  47. 47.
    Ryglewicz D, Rodo M, Kunicki PK et al (2002) Plasma antioxidant activity and vascular dementia. J Neurol Sci 203–204:195–197CrossRefPubMedGoogle Scholar
  48. 48.
    Veenith T, Goon SS, Burnstein RM (2009) Molecular mechanisms of traumatic brain injury: the missing link in management. World J Emerg Surg 4:7.  https://doi.org/10.1186/1749-7922-4-7 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Bondi CO, Semple BD, Noble-Haeusslein LJ, Osier ND, Carlson SW, Dixon CE, Giza CC, Kline AE (2015) Found in translation: understanding the biology and behavior of experimental traumatic brain injury. Neurosci Biobehav Rev 58:123–146.  https://doi.org/10.1016/j.neubiorev.2014.12.004 CrossRefPubMedGoogle Scholar
  50. 50.
    Agrawal R, Tyagi E, Vergnes L, Reue K, Gomez-Pinilla F (2014) Coupling energy homeostasis with a mechanism to support plasticity in brain trauma. Biochim Biophys Acta (BBA) - Mol Basis Dis 1842:535–546.  https://doi.org/10.1016/j.bbadis.2013.12.004 CrossRefGoogle Scholar
  51. 51.
    Wu A, Ying Z, Gomez-Pinilla F (2010) Vitamin E protects against oxidative damage and learning disability after mild traumatic brain injury in rats. Neurorehabil Neural Repair 24:290–298.  https://doi.org/10.1177/1545968309348318 CrossRefGoogle Scholar
  52. 52.
    Conte V, Uryu K, Fujimoto S, Yao Y, Rokach J, Longhi L, Trojanowski JQ, Lee VMY, McIntosh TK, Pratico D (2004) Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury. J Neurochem 90:758–764.  https://doi.org/10.1111/j.1471-4159.2004.02560.x CrossRefPubMedGoogle Scholar
  53. 53.
    Khanna S, Heigel M, Weist J, Gnyawali S, Teplitsky S, Roy S, Sen CK, Rink C (2015) Excessive α-tocopherol exacerbates microglial activation and brain injury caused by acute ischemic stroke. FASEB J 29:828–836.  https://doi.org/10.1096/fj.14-263723 CrossRefPubMedGoogle Scholar
  54. 54.
    Ishaq GM, Saidu Y, Bilbis LS et al (2013) Effects of α-tocopherol and ascorbic acid in the severity and management of traumatic brain injury in albino rats. J Neurosci Rural Pract 4:292–297.  https://doi.org/10.4103/0976-3147.118784 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Yang J, Han Y, Ye W, Liu F, Zhuang K, Wu G (2013) Alpha tocopherol treatment reduces the expression of Nogo-A and NgR in rat brain after traumatic brain injury. J Surg Res 182:e69–e77.  https://doi.org/10.1016/j.jss.2012.11.010 CrossRefPubMedGoogle Scholar
  56. 56.
    Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds (2000) Dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids. National Academies Press (US), WashingtonGoogle Scholar
  57. 57.
    Horwitt MK, Century B, Zeman AA (1963) Erythrocyte survival time and reticulocyte levels after tocopherol depletion in man. Am J Clin Nutr 12:99–106CrossRefPubMedGoogle Scholar
  58. 58.
    Razmkon A, Sadidi A, Sherafat-Kazemzadeh E, Mehrafshan A, Jamali M, Malekpour B, Saghafinia M (2011) Administration of vitamin C and vitamin E in severe head injury: a randomized double-blind controlled trial. Clin Neurosurg 58:133–137CrossRefPubMedGoogle Scholar
  59. 59.
    Durmaz R, Ertilav K, Akyüz F, Kanbak G, Bildirici K, Tel E (2003) Lazaroid U-74389G attenuates edema in rat brain subjected to post-ischemic reperfusion injury. J Neurol Sci 215:87–93CrossRefPubMedGoogle Scholar
  60. 60.
    Durmaz R, Kanbak G, Akyüz F, Isiksoy S, Yücel F, Inal M, Tel E (2003) Lazaroid attenuates edema by stabilizing ATPase in the traumatized rat brain. Can J Neurol Sci J Can Sci Neurol 30:143–149CrossRefGoogle Scholar
  61. 61.
    Tseng MT, Chan SA, Reid K, Lyer V (1997) Post-ischemic treatment with a lazaroid (U74389G) prevents transient global ischemic damage in rat hippocampus. Neurol Res 19:431–434CrossRefPubMedGoogle Scholar
  62. 62.
    Lai L-N, Zhang X-J, Zhang X-Y et al (2016) Lazaroid U83836E protects the heart against ischemia reperfusion injury via inhibition of oxidative stress and activation of PKC. Mol Med Rep 13:3993–4000.  https://doi.org/10.3892/mmr.2016.5030 CrossRefPubMedGoogle Scholar
  63. 63.
    Braughler JM, Pregenzer JF (1989) The 21-aminosteroid inhibitors of lipid peroxidation: reactions with lipid peroxyl and phenoxy radicals. Free Radic Biol Med 7:125–130CrossRefPubMedGoogle Scholar
  64. 64.
    Hall ED, Braughler JM, Yonkers PA, Smith SL, Linseman KL, Means ED, Scherch HM, von Voigtlander P, Lahti RA, Jacobsen EJ (1991) U-78517F: a potent inhibitor of lipid peroxidation with activity in experimental brain injury and ischemia. J Pharmacol Exp Ther 258:688–694PubMedGoogle Scholar
  65. 65.
    Mustafa AG, Singh IN, Wang J, Carrico KM, Hall ED (2010) Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals. J Neurochem 114:271–280.  https://doi.org/10.1111/j.1471-4159.2010.06749.x PubMedPubMedCentralGoogle Scholar
  66. 66.
    Wang D, Qu Z, Yang L, Zhang Q, Liu ZH, Do T, Adelson DL, Wang ZY, Searle I, Zhu JK (2017) Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants. Plant J Cell Mol Biol 90:133–146.  https://doi.org/10.1111/tpj.13481 CrossRefGoogle Scholar
  67. 67.
    Blasig IE, Mertsch K, Haseloff RF (2002) Nitronyl nitroxides, a novel group of protective agents against oxidative stress in endothelial cells forming the blood-brain barrier. Neuropharmacology 43:1006–1014CrossRefPubMedGoogle Scholar
  68. 68.
    Mustafa AG, Wang JA, Carrico KM, Hall ED (2011) Phramacological inhibition of lipid peroxidation attenuates calpain-mediated cytoskeletal degradation after traumatic brain injury. J Neurochem 117:579–588.  https://doi.org/10.1111/j.1471-4159.2011.07228.x CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Clinic of NeurosurgeryUniversity Hospital BrnoBrnoCzech Republic
  2. 2.Department of Pathological Physiology, Faculty of MedicineMasaryk UniversityBrnoCzech Republic
  3. 3.Research Centre for Toxic Compounds in the Environment, Faculty of SciencesMasaryk UniversityBrnoCzech Republic

Personalised recommendations