Neurological Sciences

, Volume 39, Issue 4, pp 647–654 | Cite as

Peripheral Th17/Treg imbalance in elderly patients with ischemic stroke

  • Sanam Dolati
  • Majid Ahmadi
  • Mohammad Khalili
  • Ali Akabar Taheraghdam
  • Homayoon Siahmansouri
  • Zohreh Babaloo
  • Leili Aghebati-Maleki
  • Farhad Jadidi-Niaragh
  • Vahid Younesi
  • Mehdi Yousefi
Original Article

Abstract

CD4+CD25+ regulatory T (Treg) cells and Th17 cells play important roles in peripheral immunity. Immune responses are main elements in the pathogenesis of ischemic stroke (IS). The contribution of Th17 cells in IS patients has not been proved, and whether the balance of Treg/Th17 cells is changed in IS patients remains unidentified. In the present study, we studied Th17 and Treg cell frequency, cytokine secretion, expression of transcription factors, and microRNAs related to Th17 and Treg cells differentiation, which is compared between IS patients and control group. Thirty patients with IS and 30 individuals as control group were enrolled in this study. The frequency of Th17 and Treg lymphocytes, the expression of transcription factors and microRNAs related to these cells, and the serum levels of associated cytokines were assessed by flow cytometry, real-time PCR, and ELISA, respectively. A significant reduction in proportion of peripheral Treg cell frequency and the levels of TGF-β and FOXP3 expression were observed in patients with IS compared with controls, while the proportions of Th17 were increased dramatically, and these effects were along with increases in the levels of IL-17A and RORγt expression in IS patients. The levels of mir-326 and mir-106b-25 expression were increased in patients with IS. These studies suggest that the increase in proportion of Th17 cells and decrease in Treg cells might contribute to the pathogenesis of IS. Manipulating the balance between Tregs and Th17 cells might be helpful for the treatment of IS.

Keywords

Ischemic stroke Th17 Treg miRNAs 

Notes

Acknowledgments

This work was financially supported by the grant of Aging Research Institute, Tabriz University of Medical Sciences, and Tabriz, Iran.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

  1. 1.
    Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D (2011) Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 10(5):471–480CrossRefPubMedGoogle Scholar
  2. 2.
    Liu X (2012) Beyond the time window of intravenous thrombolysis: standing by or by stenting? Interventional neurology 1(1):3–15.  https://doi.org/10.1159/000338389 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Park M-G, Kim M-K, Chae S-H, Kim H-K, Han J, Park K-P (2017) Lymphocyte-to-monocyte ratio on day 7 is associated with outcomes in acute ischemic stroke. Neurol Sci 1–7Google Scholar
  4. 4.
    Xu X, Li M, Jiang Y (2013) The paradox role of regulatory T cells in ischemic stroke. Sci World J 2013:1–8.  https://doi.org/10.1155/2013/174373 Google Scholar
  5. 5.
    Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua DJ (2009) Pivotal role of cerebral interleukin-17-producing γδT cells in the delayed phase of ischemic brain injury. Nat Med 15(8):946–950.  https://doi.org/10.1038/nm.1999 CrossRefPubMedGoogle Scholar
  6. 6.
    Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15(2):192–199.  https://doi.org/10.1038/nm.1927 CrossRefPubMedGoogle Scholar
  7. 7.
    Kleinschnitz C, Wiendl H (2013) Con: regulatory T cells are protective in ischemic stroke. Stroke 44(8):e87–e88CrossRefPubMedGoogle Scholar
  8. 8.
    Dolati S, Babaloo Z, Jadidi-Niaragh F, Ayromlou H, Sadreddini S, Yousefi M (2017) Multiple sclerosis: therapeutic applications of advancing drug delivery systems. Biomed Pharmacother 86:343–353.  https://doi.org/10.1016/j.biopha.2016.12.010 CrossRefPubMedGoogle Scholar
  9. 9.
    Lajoie S, Lewkowich IP, Suzuki Y, Clark JR, Sproles AA, Dienger K, Budelsky AL, Wills-Karp M (2010) Complement-mediated regulation of the IL-17A axis is a central genetic determinant of the severity of experimental allergic asthma. Nat Immunol 11(10):928–935.  https://doi.org/10.1038/ni.1926 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Swardfager W, Winer DA, Herrmann N, Winer S, Lanctôt KL (2013) Interleukin-17 in post-stroke neurodegeneration. Neurosci Biobehav Rev 37(3):436–447.  https://doi.org/10.1016/j.neubiorev.2013.01.021 CrossRefPubMedGoogle Scholar
  11. 11.
    Schäbitz W-R (2013) Regulatory T cells in ischemic stroke. Stroke 44(8):e84–e84CrossRefPubMedGoogle Scholar
  12. 12.
    Kirkham BW, Kavanaugh A, Reich K (2014) Interleukin-17A: a unique pathway in immune-mediated diseases: psoriasis, psoriatic arthritis and rheumatoid arthritis. Immunology 141(2):133–142CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dolati S, Sadreddini S, Rostamzadeh D, Ahmadi M, Jadidi-Niaragh F, Yousefi M (2016) Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomed Pharmacother 80:30–41.  https://doi.org/10.1016/j.biopha.2016.03.004 CrossRefPubMedGoogle Scholar
  14. 14.
    Magnus T, Wiendl H, Kleinschnitz C (2012) Immune mechanisms of stroke. Curr Opin Neurol 25(3):334–340CrossRefPubMedGoogle Scholar
  15. 15.
    Noack M, Miossec P (2014) Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev 13(6):668–677.  https://doi.org/10.1016/j.autrev.2013.12.004 CrossRefPubMedGoogle Scholar
  16. 16.
    Hu Y, Zheng Y, Wu Y, Ni B, Shi S (2014) Imbalance between IL-17A-producing cells and regulatory T cells during ischemic stroke. Mediat Inflamm 2014:1–8.  https://doi.org/10.1155/2014/813045 Google Scholar
  17. 17.
    Gan C, Wang C, Tan K (2012) Circulatory microRNA-145 expression is increased in cerebral ischemia. Genet Mol Res 11(1):147–152CrossRefPubMedGoogle Scholar
  18. 18.
    Majdi A, Mahmoudi J, Sadigh-Eteghad S, Farhoudi M, Shotorbani SS (2016) The interplay of microRNAs and post-ischemic glutamate excitotoxicity: an emergent research field in stroke medicine. Neurol Sci 37(11):1765–1771CrossRefPubMedGoogle Scholar
  19. 19.
    Dolati S, Maleki LA, Ahmadi M, Marofi F, Babaloo Z, Ayramloo H, Jafarisavari Z, Oskouei H, Afkham A, Younesi V (2017) Nanocurcumin restores aberrant miRNA expression profile in multiple sclerosis, randomized, double-blind, placebo-controlled trial. J Cell PhysiolGoogle Scholar
  20. 20.
    Petrocca F, Vecchione A, Croce CM (2008) Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor β signaling. Cancer Res 68(20):8191–8194CrossRefPubMedGoogle Scholar
  21. 21.
    De Santis G, Ferracin M, Biondani A, Caniatti L, Tola MR, Castellazzi M, Zagatti B, Battistini L, Borsellino G, Fainardi E (2010) Altered miRNA expression in T regulatory cells in course of multiple sclerosis. J Neuroimmunol 226(1):165–171.  https://doi.org/10.1016/j.jneuroim.2010.06.009 CrossRefPubMedGoogle Scholar
  22. 22.
    de Faria O Jr, Moore CS, Kennedy TE, Antel JP, Bar-Or A, Dhaunchak AS (2012) MicroRNA dysregulation in multiple sclerosis. Front Genet 3Google Scholar
  23. 23.
    Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF (2017) Pathogenic mechanisms following ischemic stroke. Neurol Sci 1–20Google Scholar
  24. 24.
    Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17(7):796–808.  https://doi.org/10.1038/nm.2399 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kleinschnitz C, Schwab N, Kraft P, Hagedorn I, Dreykluft A, Schwarz T, Austinat M, Nieswandt B, Wiendl H, Stoll G (2010) Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 115(18):3835–3842.  https://doi.org/10.1182/blood-2009-10-249078 CrossRefPubMedGoogle Scholar
  26. 26.
    Planas AM, Chamorro A (2009) Regulatory T cells protect the brain after stroke. Nat Med 15(2):138–139.  https://doi.org/10.1038/nm0209-138 CrossRefPubMedGoogle Scholar
  27. 27.
    Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KH (2009) Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity 31(2):331–341.  https://doi.org/10.1016/j.immuni.2009.08.001 CrossRefPubMedGoogle Scholar
  28. 28.
    Gelderblom M, Weymar A, Bernreuther C, Velden J, Arunachalam P, Steinbach K, Orthey E, Arumugam TV, Leypoldt F, Simova O (2012) Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 120(18):3793–3802.  https://doi.org/10.1182/blood-2012-02-412726 CrossRefPubMedGoogle Scholar
  29. 29.
    Siniscalchi A, Gallelli L, Malferrari G, Pirritano D, Serra R, Santangelo E, De Sarro G (2014) Cerebral stroke injury: the role of cytokines and brain inflammation. J Basic Clin Physiol Pharmacol 25(2):131–137CrossRefPubMedGoogle Scholar
  30. 30.
    Yan J, Read SJ, Henderson RD, Hull R, O'Sullivan JD, McCombe PA, Greer JM (2012) Frequency and function of regulatory T cells after ischaemic stroke in humans. J Neuroimmunol 243(1):89–94.  https://doi.org/10.1016/j.jneuroim.2011.12.019 CrossRefPubMedGoogle Scholar
  31. 31.
    Li Q, Wang Y, Yu F, Wang YM, Zhang C, Hu C, Wu Z, Xu X, Hu S (2013) Peripheral Th17/Treg imbalance in patients with atherosclerotic cerebral infarction. Int J Clin Exp Pathol 6(6):1015–1027PubMedPubMedCentralGoogle Scholar
  32. 32.
    Ng HP, Burris RL, Nagarajan S (2011) Attenuated atherosclerotic lesions in apoE-Fcγ-chain-deficient hyperlipidemic mouse model is associated with inhibition of Th17 cells and promotion of regulatory T cells. J Immunol 187(11):6082–6093.  https://doi.org/10.4049/jimmunol.1004133 CrossRefPubMedGoogle Scholar
  33. 33.
    Xiao S, Ma Y, Zhu H, Sun H, Yin Y, Feng G (2015) miRNA functional synergistic network analysis of mice with ischemic stroke. Neurol Sci 36(1):143–148.  https://doi.org/10.1007/s10072-014-1904-4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018
corrected publication February/2018

Authors and Affiliations

  • Sanam Dolati
    • 1
    • 2
    • 3
    • 4
  • Majid Ahmadi
    • 1
    • 2
  • Mohammad Khalili
    • 5
  • Ali Akabar Taheraghdam
    • 5
  • Homayoon Siahmansouri
    • 2
    • 4
  • Zohreh Babaloo
    • 4
  • Leili Aghebati-Maleki
    • 6
  • Farhad Jadidi-Niaragh
    • 2
    • 4
  • Vahid Younesi
    • 7
  • Mehdi Yousefi
    • 2
    • 4
    • 8
  1. 1.Aging Research InstituteTabriz University of Medical SciencesTabrizIran
  2. 2.Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
  3. 3.Student’s Research CommitteeTabriz University of Medical SciencesTabrizIran
  4. 4.Department of Immunology, School of MedicineTabriz University of Medical SciencesTabrizIran
  5. 5.Neurosciences Research CenterTabriz University of Medical SciencesTabrizIran
  6. 6.Immunology Research CenterTabriz University of Medical SciencesTabrizIran
  7. 7.Pishtaz Teb Zaman DiagnosticsTehranIran
  8. 8.Department of Immunology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran

Personalised recommendations