Skip to main content
Log in

Effect of treadmill exercise on 5-HT, 5-HT1A receptor and brain derived neurophic factor in rats after permanent middle cerebral artery occlusion

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

It has been well documented that exercise promotes neurological rehabilitation in patients with cerebral ischemia. However, the exact mechanisms have not been fully elucidated. This study aimed to discuss the effect of treadmill exercise on expression levels of 5-HT, 5-HT1A receptor (5-HT1AR) and brain derived neurophic factor (BDNF) in rat brains after permanent middle cerebral artery occlusion (pMCAO). A total of 55 rats were randomly divided into 3 groups: pMCAO group, pMCAO and treadmill exercise (pMCAO + Ex) group, and sham-operated group. Rats in pMCAO + Ex group underwent treadmill exercise for 16 days. Neurological function was evaluated by modified Neurological Severity Scores (mNSS). High-performance liquid chromatography-electrochemical detection system was used to determine the content of 5-HT in cortex tissues. The protein levels of 5-HT1AR, BDNF and synaptophysin were measured by Western blot. The mNSS in pMCAO + Ex group was lower than that in pMCAO group on day 19 post-MCAO (p < 0.001). The content of 5-HT dropped to 3.81 ± 1.86 ng/ml in pMCAO group (43.84 ± 2.05 ng/ml in sham-operated group), but increased in pMCAO + Ex group (10.06 ± 1.80 ng/ml). The protein expressions levels of synaptophysin, 5-HT1AR and BDNF were downregulated after cerebral ischemia (p < 0.05), and upregulated after treadmill exercise (p < 0.05). These results indicate that treadmill exercise improves neurologic function, enhances neuronal plasticity and upregulates the levels of 5-HT, 5-HT1AR and BDNF in rats with pMCAO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Matsuda F, Sakakima H, Yoshida Y (2011) The effects of early exercise on brain damage and recovery after focal cerebral infarction in rats. Acta Physiol (Oxf) 201:275–287

    Article  CAS  Google Scholar 

  2. Ferreira AF, Real CC, Rodrigues AC, Alves AS, Britto LR (2010) Moderate exercise changes synaptic and cytoskeletal proteins in motor regions of the rat brain. Brain Res 1361:31–42

    Article  CAS  PubMed  Google Scholar 

  3. Tang Q, Yang Q, Hu Z, Liu B, Shuai J, Wang G, Liu Z, Xia J, Shen X (2007) The effects of willed movement therapy on AMPA receptor properties for adult rat following focal cerebral ischemia. Behav Brain Res 181:254–261

    Article  CAS  PubMed  Google Scholar 

  4. Vitalis T, Parnavelas JG (2003) The role of serotonin in early cortical development. Dev Neurosci 25:245–256

    Article  CAS  PubMed  Google Scholar 

  5. Azmitia EC (2001) Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res Bull 56:413–424

    Article  CAS  PubMed  Google Scholar 

  6. Harrison MJ, Marsdon CD, Jenner P (1979) Effect of experimental ischemia on neurotransmitter amines in the gerbil brain. Stroke 10:165–168

    Article  CAS  PubMed  Google Scholar 

  7. Kanthan R, Shuaib A, Griebel R, el-Alazounni H, Miyashita H, Kalra J (1996) Evaluation of monoaminergic neurotransmitters in the acute focal ischemic human brain model by intracerebral in vivo microdialysis. Neurochem Res 21:563–566

    Article  CAS  PubMed  Google Scholar 

  8. Chen HI, Lin LC, Yu L, Liu YF, Kuo YM, Huang AM, Chuang JI, Wu FS, Liao PC, Jen CJ (2008) Treadmill exercise enhances passive avoidance learning in rats: the role of down-regulated serotonin system in the limbic system. Neurobiol Learn Mem 89:489–496

    Article  CAS  PubMed  Google Scholar 

  9. Baek SS, Jun TW, Kim KJ, Shin MS, Kang SY, Kim CJ (2012) Effects of postnatal treadmill exercise on apoptotic neuronal cell death and cell proliferation of maternal-separated rat pups. Brain Dev 34:45–56

    Article  PubMed  Google Scholar 

  10. Berchtold NC, Chinn G, Chou M, Kesslak JP, Cotman CW (2005) Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience 133:853–861

    Article  CAS  PubMed  Google Scholar 

  11. Mattson MP, Maudsley S, Martin B (2004) BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci 27:589–594

    Article  CAS  PubMed  Google Scholar 

  12. Salazar-Colocho P, Del Río J, Frechilla D (2008) Neuroprotective effects of serotonin 5-HT1A receptor activation against ischemic cell damage in gerbil hippocampus: involvement of NMDA receptor NR1 subunit and BDNF. Brain Res 1199:159–166

    Article  CAS  PubMed  Google Scholar 

  13. Marco I, Valhondo M, Martin-Fontecha M, Vazquez-Villa H, Del Rio J, Planas A, Sagredo O, Ramos JA, Torrecillas IR, Pardo L, Frechilla D, Benhamú B, López-Rodríguez ML (2011) New serotonin 5-HT(1A) receptor agonists with neuroprotective effect against ischemic cell damage. J Med Chem 54:7986–7999

    Article  CAS  PubMed  Google Scholar 

  14. Galter D, Unsicker K (2000) Sequential activation of the 5-HT1(A) serotonin receptor and TrkB induces the serotonergic neuronal phenotype. Mol Cell Neurosci 15:446–455

    Article  CAS  PubMed  Google Scholar 

  15. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rat. Stroke 20:84–91

    Article  CAS  PubMed  Google Scholar 

  16. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005–1011

    Article  CAS  PubMed  Google Scholar 

  17. Chang HC, Yang YR, Wang SG, Wang RY (2009) Effects of treadmill training on motor performance and extracellular glutamate level in striatum in rats with or without transient middle cerebral artery occlusion. Behav Brain Res 205:450–455

    Article  CAS  PubMed  Google Scholar 

  18. Jia J, Hu YS, Wu Y, Yu HX, Liu G, Zhu DN, Xia CM, Cao ZJ, Zhang X, Guo QC (2010) Treadmill pre-training suppresses the release of glutamate resulting from cerebral ischemia in rats. Exp Brain Res 204:173–179

    Article  CAS  PubMed  Google Scholar 

  19. Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25:295–301

    Article  CAS  PubMed  Google Scholar 

  20. Farmer J, Zhao X, van Praag H, Wodtke K, Gage FH, Christie BR (2004) Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124:71–79

    Article  CAS  PubMed  Google Scholar 

  21. Matsuda F, Sakakima H, Yoshida Y (2011) The effects of early exercise on brain damage and recovery after focal cerebral infarction in rats. Acta Physiol (Oxf) 201:275–287

    Article  CAS  Google Scholar 

  22. Compan V (2007) Serotonin receptors in neurobiology. CRC Press, Boca Raton

    Google Scholar 

  23. Wiedenmann B, Franke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell 41:1017–1028

    Article  CAS  PubMed  Google Scholar 

  24. Marin R, Williams A, Hale S, Burge B, Mense M, Bauman R, Tortella F (2003) The effect of voluntary exercise exposure on histological and neurobehavioral outcomes after ischemic brain injury in the rat. Physiol Behav 80:167–175

    Article  CAS  PubMed  Google Scholar 

  25. Briones TL, Woods J, Wadowska M, Rogozinska M, Nguyen M (2006) Astrocytic changes in the hippocampus and functional recovery after cerebral ischemia are facilitated by rehabilitation training. Behav Brain Res 171:17–25

    Article  CAS  PubMed  Google Scholar 

  26. Kim MW, Bang MS, Han TR, Ko YJ, Yoon BW, Kim JH, Kang LM, Lee KM, Kim MH (2005) Exercise increased BDNF and trkB in the contralateral hemisphere of the ischemic rat brain. Brain Res 1052:16–21

    Article  CAS  PubMed  Google Scholar 

  27. Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, Secher NH, Pedersen BK, Pilegaard H (2009) Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 94:1062–1069

    Article  CAS  PubMed  Google Scholar 

  28. Combs C, Ke Z, Yip SP, Li L, Zheng XX, Tong KY (2011) The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: a rat brain ischemia model. PLoS ONE 6:e16643. doi:10.1371/journal.pone.0016643

    Article  Google Scholar 

  29. Yang YR, Wang RY, Wang PS (2003) Early and late treadmill training after focal brain ischemia in rats. Neurosci Lett 339:91–94

    Article  CAS  PubMed  Google Scholar 

  30. Sundseth A, Thommessen B, Ronning OM (2012) Outcome after mobilization within 24 hours of acute stroke: a randomized controlled trial. Stroke 43:2389–2394

    Article  PubMed  Google Scholar 

  31. Cowen DS (2007) Serotonin and neuronal growth factors—a convergence of signaling pathways. J Neurochem 101:1161–1171

    Article  CAS  PubMed  Google Scholar 

  32. Burke TF, Advani T, Adachi M, Monteggia LM, Hensler JG (2012) Sensitivity of hippocampal 5-HT1A receptors to mild stress in BDNF-deficient mice. Int J Neuropsychopharmacol 1–15. doi:10.1017/s1461145712000466

  33. Wu YC, Hill RA, Klug M, van den Buuse M (2012) Sex-specific and region-specific changes in BDNF–TrkB signalling in the hippocampus of 5-HT1A receptor and BDNF single and double mutant mice. Brain Res 1452:10–17. doi:10.1016/j.brainres.2012.03.011

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, X., Zhang, M., Yang, W. et al. Effect of treadmill exercise on 5-HT, 5-HT1A receptor and brain derived neurophic factor in rats after permanent middle cerebral artery occlusion. Neurol Sci 35, 761–766 (2014). https://doi.org/10.1007/s10072-013-1599-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-013-1599-y

Keywords

Navigation